15 research outputs found

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    A facile method to prepare oriented boron nitride-based polymer composite with enhanced thermal conductivity and mechanical properties

    No full text
    Hexagonal boron nitride (BN) is often used as filler to improve the thermal conductivity of polymer matrix due to its high thermal conductivity. However, previously reported BN-based composites always have a high in-plane thermal conductivity, which is not beneficial for vertical heat dissipation. In addition, high BN content results in the deterioration of the mechanical properties. Here, we report a feasible method to prepare a BN/silicone rubber (SiR) composite with oriented BN in organosilicon matrix via a vacuum-assisted self-assembly technique. The BN/SiR composite displays a 1270% higher (2.74 W/(m·K)) thermal conductivity than that of neat organosilicon matrix (0.20 W/(m·K)). The oriented BN nanosheets increase the polymer's adhesive force and exhibit excellent compression cycle performance. In turn, these features support its superiority as thermal interface material in the light-emitting diode chips heat dissipation application.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material

    Erosional Cyclic Steps Governed by Plunge Pool Erosion: A Parametric Study Based on Field, Laboratory, and Model Data

    No full text
    For upland ephemeral gullies, gully erosion is strongly related to the formation and migration of cyclic steps. It is necessary to provide insight into the process of cyclic step development to accurately predict the pace of landscape evolution and soil loss. Information on the geometry of cyclic steps in subaerial environments is limited, and, to our knowledge, no model of cyclic step development considers plunge pool erosion. In this study, we analyze the geometric features and controlling factors of erosional cyclic steps through meta-analysis of measured data including new measurements in the Loess Plateau, China. We focus on cyclic step dynamics of fluvial beds controlled by bed shear stress and local plunge pool erosion. We develop a new theory to incorporate plunge pool erosion through adapting existing cyclic step and plunge pool models. Our method agrees with measured data, showing that a larger flow rate leads to larger step length Ld and height Hd and increasing erodibility increases step aspect ratio Ld/Hd. The method is also able to predict how the step length, height, and aspect ratio change with the average channel slope. Our results indicate that plunge pool erosion is an important mechanism of cyclic step evolution. However, plunge pool development alone is not sufficient to explain the wide range of Ld/Hd in the measured data. The posed theory relates to equilibrium conditions and thus cannot consider temporal adjustments in step geometry.Rivers, Ports, Waterways and Dredging Engineerin

    Texture Design for Reducing Tactile Friction Independent of Sliding Orientation on Stainless Steel Sheet

    Get PDF
    Surface texture is important for contact mechanical and tribological phenomena such as the contact area and friction. In this research, three different types of geometrical microstructures were designed and fabricated by pulsed laser surface texturing as semi-symmetric (grooved channel), asymmetric fractal (Hilbert curve), and symmetric patterns (grid). A conventionally finished surface as a reference sample from the same stainless steel sheet material was compared. From the experimental approach, a multiaxis force/torque transducer was used to investigate the functionality of surface texture based on measuring the tactile friction in three different sliding directions: perpendicular, parallel, and 45° to the textures. According to the dynamic friction measurements, the grid texture was indeed orientation independent. The other samples showed orientation-dependent frictional behavior, especially the grooved channel texture and reference sample. Furthermore, an analytical approach was applied to estimate the values of the friction coefficient by the pressure distribution method. From both the experimental and analytical approaches, the grid pattern was validated to be the optimal texture design in the concern of friction reduction and orientation-independent behavior.Railway Engineerin

    Finger pad friction and tactile perception of laser treated, stamped and cold rolled micro-structured stainless steel sheet surfaces

    Get PDF
    Tactile perception is a complex system, which depends on frictional interactions between skin and counter-body. The contact mechanics of tactile friction is governed by many factors such as the state and properties of skin and counter-body. In order to discover the connection between perception and tactile friction on textured stainless steel sheets, both perception experiments (subjective) and tactile friction measurements (objective) were performed in this research. The perception experiments were carried out by using a panel test method to identify the perceived roughness, perceived stickiness and comfort level from the participants. For the friction experiments, tactile friction was measured by a multi-axis force/torque transducer in vivo. The perceived stickiness was illustrated as an effective subjective stimulus, which has a negative correlation to the comfort perception. No significant evidence was revealed to the connection between the perceived roughness and comfort perception, and this relationship may be influenced by the participants’ individual experience, gender and moisture level of skin. Furthermore, the kinetic tactile friction was concluded as an objective stimulus to the comfort perception with a negative correlation.Railway Engineerin

    Ultra-low Hysteresis in Giant Magnetocaloric Mn<sub>1-x</sub>V<sub>x</sub>Fe<sub>0.95</sub>(P,Si,B) Compounds

    No full text
    Large thermal hysteresis in the (Mn,Fe)2(P,Si) system hinders an efficient heat exchange and thus limits the magnetocaloric applications. Substitution of manganese by vanadium in the Mn1-x1Vx1Fe0.95P0.593Si0.33B0.077 and Mn1-x2Vx2Fe0.95P0.563Si0.36B0.077 compounds enable a significant reduction in the thermal hysteresis without losing the giant magnetocaloric effect. For the composition closest to the critical one, where first-order crossovers to second-order phase transition in the series of x2 = 0.02, Mn0.98V0.02Fe0.95P0.563Si0.36B0.077 exhibits a thermal hysteresis that is reduced from 1.5 to 0.5 K by 67%, yielding an adiabatic temperature change of 2.3 K and magnetic entropy change of 5.6 J/kgK for an applied field of 1 T, which demonstrates its potential for highly efficient magnetic heat pumps utilizing low-cost permanent magnets.RST/Fundamental Aspects of Materials and Energ

    Combined effect of annealing temperature and vanadium substitution for mangetocaloric Mn<sub>1.2-x</sub>V<sub>x</sub>Fe<sub>0.75</sub>P<sub>0.5</sub>Si<sub>0.5</sub> alloys

    No full text
    Approaching the border of the first order transition and second order transition is significant to optimize the giant magnetocaloric materials performance. The influence of vanadium substitution in the Mn1.2-xVxFe0.75P0.5Si0.5 alloys is investigated for annealing temperatures of 1323, 1373 and 1423 K. By tuning both the annealing temperature and the V substitution simultaneously, the magnetocaloric effect can be enhanced without enlarging the thermal hysteresis near the border of the first to second order transition. Neutron diffraction measurements reveal the changes of site occupation and interatomic distances caused by varying the annealing temperature and V substitution. The properties of the alloy with x = 0.02 annealed at 1323 K is comparable to those found for the MnFe0.95P0.595Si0.33B0.075 alloy, illustrating that Mn1.2-xVxFe0.75P0.5Si0.5 alloys are excellent materials for magnetic heat-pumping near room temperature.RST/Fundamental Aspects of Materials and EnergyQRD/Kouwenhoven LabRST/Neutron and Positron Methods in Material

    Selection of micro-fabrication techniques on stainless steel sheet for skin friction

    No full text
    This review gives a concise introduction to the state-of-art techniques used for surface texturing, e.g., wet etching, plasma etching, laser surface texturing (LST), 3D printing, etc. In order to fabricate deterministic textures with the desired geometric structures and scales, the innovative texturing technologies are developed and extended. Such texturing technology is an emerging frontier with revolutionary impact in industrial and scientific fields. With the help of the latest fabrication technologies, surface textures are scaling down and more complex deterministic patterns may be fabricated with desired functions, e.g., lotus effect (hydrophobic), gecko feet (adhesive), haptic tactile, etc. The objective of this review is to explore the surface texturing technology and its contributions to the applications.Railway Engineerin

    An extension of the Quasicontinuum Treatment of Multiscale Solid Systems to Nonzero Temperature

    No full text
    Covering the solid lattice with a finite-element mesh produces a coarse-grained system of mesh nodes as pseudoatoms interacting through an effective potential energy that depends implicitly on the thermodynamic state. Use of the pseudoatomic Hamiltonian in a Monte Carlo simulation of the two-dimensional Lennard-Jones crystal yields equilibrium thermomechanical properties (e.g., isotropic stress) in excellent agreement with ``exact'' fully atomistic results

    Characterization of in vitro metabolites of irisflorentin by rat liver microsomes using high-performance liquid chromatography coupled with tandem mass spectrometry

    No full text
    Belamcanda chinensis has been extensively used as antibechic, expectorant and anti-inflammatory agent in traditional medicine. Irisflorentin is one of the major active ingredients. However, little is known about the metabolism of irisflorentin so far. In this work, rat liver microsomes (RLMs) were used to investigate the metabolism of this compound for the first time. Seven metabolites were detected. Five of them were identified as 6,7-dihydroxy-5,3,4,5-tetramethoxy isoflavone (M1), irigenin (M2), 5,7,4-trihydroxy-6,3,5-trimethoxy isoflavone (M3), 6,7,4-trihydroxy-5,3,5-trimethoxy isoflavone (M4) and 6,7,5-trihydroxy-5,3,4-trimethoxy isoflavone (M5) by means of NMR and/or HPLC-ESI-MS. The structures of M6 and M7 were not elucidated because they produced no MS signals. The predominant metabolite M1 was noted to be a new compound. Interestingly, it was found to possess anticancer activity much higher than the parent compound. The enzymatic kinetic parameters of M1 revealed a sigmoidal profile, with V-max = 12.02 m/mg protein/min, K-m = 37.24 m, CLint = 0.32 L/mg protein/min and h = 1.48, indicating the positive cooperation. For the first time in this work, a new metabolite of irisflorentin was found to demonstrate a much higher biological activity than its parent compound, suggesting a new avenue for the development of drugs from B. chinensis, which was also applicable for other herbal plants. Copyright (c) 2016 John Wiley & Sons, Ltd
    corecore