754 research outputs found

    Selective readout and back-action reduction for wideband acoustic gravitational wave detectors

    Full text link
    We present the concept of selective readout for broadband resonant mass gravitational wave detectors. This detection scheme is capable of specifically selecting the signal from the contributions of the vibrational modes sensitive to the gravitational waves, and efficiently rejecting the contribution from non gravitationally sensitive modes. Moreover this readout, applied to a dual detector, is capable to give an effective reduction of the back-action noise within the frequency band of interest. The overall effect is a significant enhancement in the predicted sensitivity, evaluated at the standard quantum limit for a dual torus detector. A molybdenum detector, 1 m in diameter and equipped with a wide area selective readout, would reach spectral strain sensitivities 2x10^{-23}/sqrt{Hz} between 2-6 kHz.Comment: 9 pages, 4 figure

    Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature

    Full text link
    We apply a feedback cooling technique to simultaneously cool the three electromechanical normal modes of the ton-scale resonant-bar gravitational wave detector AURIGA. The measuring system is based on a dc Superconducting Quantum Interference Device (SQUID) amplifier, and the feedback cooling is applied electronically to the input circuit of the SQUID. Starting from a bath temperature of 4.2 K, we achieve a minimum temperature of 0.17 mK for the coolest normal mode. The same technique, implemented in a dedicated experiment at subkelvin bath temperature and with a quantum limited SQUID, could allow to approach the quantum ground state of a kilogram-scale mechanical resonator.Comment: 4 pages, 4 figure

    Robust vetoes for gravitational-wave burst triggers using known instrumental couplings

    Get PDF
    The search for signatures of transient, unmodelled gravitational-wave (GW) bursts in the data of ground-based interferometric detectors typically uses `excess-power' search methods. One of the most challenging problems in the burst-data-analysis is to distinguish between actual GW bursts and spurious noise transients that trigger the detection algorithms. In this paper, we present a unique and robust strategy to `veto' the instrumental glitches. This method makes use of the phenomenological understanding of the coupling of different detector sub-systems to the main detector output. The main idea behind this method is that the noise at the detector output (channel H) can be projected into two orthogonal directions in the Fourier space -- along, and orthogonal to, the direction in which the noise in an instrumental channel X would couple into H. If a noise transient in the detector output originates from channel X, it leaves the statistics of the noise-component of H orthogonal to X unchanged, which can be verified by a statistical hypothesis testing. This strategy is demonstrated by doing software injections in simulated Gaussian noise. We also formulate a less-rigorous, but computationally inexpensive alternative to the above method. Here, the parameters of the triggers in channel X are compared to the parameters of the triggers in channel H to see whether a trigger in channel H can be `explained' by a trigger in channel X and the measured transfer function.Comment: 14 Pages, 8 Figures, To appear in Class. Quantum Gra

    Correlation between Gamma-Ray bursts and Gravitational Waves

    Get PDF
    The cosmological origin of γ\gamma-ray bursts (GRBs) is now commonly accepted and, according to several models for the central engine, GRB sources should also emit at the same time gravitational waves bursts (GWBs). We have performed two correlation searches between the data of the resonant gravitational wave detector AURIGA and GRB arrival times collected in the BATSE 4B catalog. No correlation was found and an upper limit \bbox{hRMS1.5×1018h_{\text{RMS}} \leq 1.5 \times 10^{-18}} on the averaged amplitude of gravitational waves associated with γ\gamma-ray bursts has been set for the first time.Comment: 7 pages, 3 figures, submitted to Phys. Rev.

    Wideband dual sphere detector of gravitational waves

    Get PDF
    We present the concept of a sensitive AND broadband resonant mass gravitational wave detector. A massive sphere is suspended inside a second hollow one. Short, high-finesse Fabry-Perot optical cavities read out the differential displacements of the two spheres as their quadrupole modes are excited. At cryogenic temperatures one approaches the Standard Quantum Limit for broadband operation with reasonable choices for the cavity finesses and the intracavity light power. A molybdenum detector of overall size of 2 m, would reach spectral strain sensitivities of 2x10^-23/Sqrt{Hz} between 1000 Hz and 3000 Hz.Comment: 4 pages, 3 figures. Changed content. To appear in Phys. Rev. Let

    ON-LINE CONSISTENCY TESTS FOR BAR DETECTORS

    Get PDF
    In order to detect gravitational wave signals with resonant bar detectors using Wiener–Kolmogorov (WK) filters, both a model for the power spectrum density (PSD) of the noise and a signal template should be provided. As the analysis is not meant to handle non-gaussian data, we have to discriminate (and constrain to) time periods where the noise follows a quasi-stationary gaussian model. Within these periods, candidate events are selected in the WK filter output, and their fundamental parameters (time of arrival and amplitude) are computed. A necessary and sufficient condition for the reliability of such estimates is the consistency of the signal shape with the template. This is done performing a goodness-of-the-fit test

    Testing of optimal filters for gravitational wave signals: An experimental implementation

    Get PDF
    We have implemented likelihood testing of the performance of an optimal filter within the online analysis of AURIGA, a sub-Kelvin resonant-bar gravitational wave detector. We demonstrate the effectiveness of this technique in discriminating between impulsive mechanical excitations of the resonant-bar and other spurious excitations. This technique also ensures the accuracy of the estimated parameters such as the signal-to-noise ratio. The efficiency of the technique to deal with non-stationary noise and its application to data from a network of detectors are also discussed

    Measuring Gravito-magnetic Effects by Multi Ring-Laser Gyroscope

    Get PDF
    We propose an under-ground experiment to detect the general relativistic effects due to the curvature of space-time around the Earth (de Sitter effect) and to rotation of the planet (dragging of the inertial frames or Lense-Thirring effect). It is based on the comparison between the IERS value of the Earth rotation vector and corresponding measurements obtained by a tri-axial laser detector of rotation. The proposed detector consists of six large ring-lasers arranged along three orthogonal axes. In about two years of data taking, the 1% sensitivity required for the measurement of the Lense-Thirring drag can be reached with square rings of 6 mm side, assuming a shot noise limited sensitivity (20prad/s/Hz 20 prad/s/\sqrt{Hz}). The multi-gyros system, composed of rings whose planes are perpendicular to one or the other of three orthogonal axes, can be built in several ways. Here, we consider cubic and octahedron structures. The symmetries of the proposed configurations provide mathematical relations that can be used to study the stability of the scale factors, the relative orientations or the ring-laser planes, very important to get rid of systematics in long-term measurements, which are required in order to determine the relativistic effects.Comment: 24 pages, 26 Postscript figure
    corecore