3,624 research outputs found
Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane
The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots
A First-Principles Study of Zinc Oxide Honeycomb Structures
We present a first-principles study of the atomic, electronic, and magnetic
properties of two-dimensional (2D), single and bilayer ZnO in honeycomb
structure and its armchair and zigzag nanoribbons. In order to reveal the
dimensionality effects, our study includes also bulk ZnO in wurtzite,
zincblende, and hexagonal structures. The stability of 2D ZnO, its nanoribbons
and flakes are analyzed by phonon frequency, as well as by finite temperature
ab initio molecular-dynamics calculations. 2D ZnO in honeycomb structure and
its armchair nanoribbons are nonmagnetic semiconductors but acquire net
magnetic moment upon the creation of zinc-vacancy defect. Zigzag ZnO
nanoribbons are ferromagnetic metals with spins localized at the oxygen atoms
at the edges and have high spin polarization at the Fermi level. However, they
change to nonmagnetic metal upon termination of their edges with hydrogen
atoms. From the phonon calculations, the fourth acoustical mode specified as
twisting mode is also revealed for armchair nanoribbon. Under tensile stress
the nanoribbons are deformed elastically maintaining honeycomblike structure
but yield at high strains. Beyond yielding point honeycomblike structure
undergo a structural change and deform plastically by forming large polygons.
The variation in the electronic and magnetic properties of these nanoribbons
have been examined under strain. It appears that plastically deformed
nanoribbons may offer a new class of materials with diverse properties.Comment: http://prb.aps.org/abstract/PRB/v80/i23/e23511
Mechanising on-the-run grain sampling
Capturing grain samples at harvest for later grain protein analysis creates logistical complications when spatial position and yield are to be monitored coincidently. The objective of the present study was to develop a sampling device that automatically captures grain during machine harvesting. The device consisted of an on-board GPS, a palm-top computer, a John Deere GreenStarTM moisture meter, and an interface box linking the components. The device has been tested on John Deere and Case harvesters. Grain samples of wheat, barley and sorghum crops were taken as frequently as every 25 m of travel. After protein analysis, the resultant protein map has been able to improve the interpretation of coincident yield maps for grain growers in eastern Australia. Additional qualitative information that influence grain price or which highlight yield-limiting factors, such as kernel weight, moisture, density or colour, may be also obtained from samples captured by the device
Field-induced structural aging in glasses at ultra low temperatures
In non-equilibrium experiments on the glasses Mylar and BK7, we measured the
excess dielectric response after the temporary application of a strong electric
bias field at mK--temperatures. A model recently developed describes the
observed long time decays qualitatively for Mylar [PRL 90, 105501, S. Ludwig,
P. Nalbach, D. Rosenberg, D. Osheroff], but fails for BK7. In contrast, our
results on both samples can be described by including an additional mechanism
to the mentioned model with temperature independent decay times of the excess
dielectric response. As the origin of this novel process beyond the "tunneling
model" we suggest bias field induced structural rearrangements of "tunneling
states" that decay by quantum mechanical tunneling.Comment: 4 pages, 4 figures, accepted at PRL, corrected typos in version
Vacancy complexes with oversized impurities in Si and Ge
In this paper we examine the electronic and geometrical structure of
impurity-vacancy complexes in Si and Ge. Already Watkins suggested that in Si
the pairing of Sn with the vacancy produces a complex with the Sn-atom at the
bond center and the vacancy split into two half vacancies on the neighboring
sites. Within the framework of density-functional theory we use two
complementary ab initio methods, the pseudopotential plane wave (PPW) method
and the all-electron Kohn-Korringa-Rostoker (KKR) method, to investigate the
structure of vacancy complexes with 11 different sp-impurities. For the case of
Sn in Si, we confirm the split configuration and obtain good agreement with EPR
data of Watkins. In general we find that all impurities of the 5sp and 6sp
series in Si and Ge prefer the split-vacancy configuration, with an energy gain
of 0.5 to 1 eV compared to the substitutional complex. On the other hand,
impurities of the 3sp and 4sp series form a (slightly distorted) substitutional
complex. Al impurities show an exception from this rule, forming a split
complex in Si and a strongly distorted substitutional complex in Ge. We find a
strong correlation of these data with the size of the isolated impurities,
being defined via the lattice relaxations of the nearest neighbors.Comment: 8 pages, 4 bw figure
Charge injection instability in perfect insulators
We show that in a macroscopic perfect insulator, charge injection at a
field-enhancing defect is associated with an instability of the insulating
state or with bistability of the insulating and the charged state. The effect
of a nonlinear carrier mobility is emphasized. The formation of the charged
state is governed by two different processes with clearly separated time
scales. First, due to a fast growth of a charge-injection mode, a localized
charge cloud forms near the injecting defect (or contact). Charge injection
stops when the field enhancement is screened below criticality. Secondly, the
charge slowly redistributes in the bulk. The linear instability mechanism and
the final charged steady state are discussed for a simple model and for
cylindrical and spherical geometries. The theory explains an experimentally
observed increase of the critical electric field with decreasing size of the
injecting contact. Numerical results are presented for dc and ac biased
insulators.Comment: Revtex, 7pages, 4 ps figure
Strategic Alignment Map: The Ongoing Development of a Program Management Tool
This article explains the development and continuous modification of a tool that can be used to improve both participant experience and faculty performance in Executive Education programs. This tool is the Strategy Alignment Map (SAM). Participants that use the SAM create a document that summarizes 1) their strategic purpose for attending a program, 2) specific learning outcomes and how they align with their strategic purpose, and 3) action steps for implementing the learning. Executive Education, faculty and the Dean all benefit in different ways from this tool that improves participant educational experiences
Recommended from our members
Charge distribution and electroluminescence in cross-linked polyethylene under dc field
The intent of this paper is to cross-correlate the information obtained by space charge distribution analysis and electroluminescence (EL) detection in cross-linked polyethylene samples submitted to dc fields, with the objective to make a link between space charge phenomena and energy release as revealed by the detection of visible photons. Space charge measurements carried out at different field levels by the pulsed electro-acoustic method show the presence of a low-field threshold, close to 15-20 kV mm-1, above which considerable space charge begins to accumulate in the insulation. Charges are seen to cross the insulation thickness through a packet-like behaviour at higher fields, starting at about 60-70 kV mm-1. EL measurements show the existence of two distinct thresholds, one related to the continuous excitation of EL under voltage, the other being transient EL detected upon specimen short circuit. The former occurs at values of field corresponding to charge packet formation and the latter to the onset of space charge accumulation. The correspondence between pertinent values of the electric field obtained through space charge and EL analyses provides support for the existence of degradation thresholds in insulating materials. Special emphasis is given to the relationship between charge packet formation and propagation, and EL. Although the two phenomena are observed in the same field range, it is found that the onset of continuous EL follows the formation at the electrodes of positive and negative space charge regions that extend into the bulk prior to the propagation of charge packets. Charge recombination appears to be the excitation process of EL since oppositely charged domains meet in the material bulk. To gain an insight into specific light-excitation processes associated with charge packet propagation, EL has been recorded for several hours under fields at which charge packet dynamics were evidenced. It is shown that current and luminescence oscillations are detected during charge packet propagation, and that they are in phase. The mechanisms underlying EL and charge packets are further considered on the basis of these results
Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter
It has been assessed the influence of four organic amendments (OA) consisting of two commercial humic amendments (liquid LF and solid SF) from olive-mill wastes, a solid urban waste (SUW), and a sewage sludge (SS) on the sorption properties and leaching potential of simazine and 2,4-D. A sandy soil (TR) and a sandy-clay soil with a relatively high montmorillonite content (A) were treated with the diverse OA. Dissolved organic matter (DOM) was extracted from the amendments, the soils, and the amended soils and studied by fluorescence spectroscopy. A humification index (HIX) was calculated from the fluorescence data. Sorption was determined with the batch technique. Spectroscopical studies revealed that the DOM of the LF differs from the other OA by having a very low ability to absorb and to fluoresce and by its very low HIX values, which indicates that the LF contains large amounts of nonhumified material and consists of small molecules. On the other hand, the SF amendment contains the highest amounts of highly humified material and a large number of carboxylic groups. Amended soils sorbed simazine and 2,4-D to a greater extent than the untreated soils, except in the case of simazine sorption in the LF amended soil A, which had a lower simazine sorption than the original soil. The small molecules of DOM in the LF compete with simazine for montmorillonite sorption sites in soil A. This is not the case for 2,4-D, since this herbicide does not sorb on montmorillonite. In the case of the soil TR, with a lower montmorillonite content, there is no competition between simazine and the LF molecules for sorption sites. Soils amended with the highly humified SF were the best sorbents for simazine but not for 2,4-D, which can be attributed to repulsion between negatively charged 2,4-D molecules and COOgroups, which are more abundant in SF.This project has been supported by Junta de AndalucÃa through Research group 4092, CICYT through AMB96-0445- CO2-O2, the Deutsher Akademischer Austauschdienst and Ministerio de Educación y Cultura through Acciones Integradas HA98-0072, and by the European Science Foundation within its Groundwater Pollution Program (G-Poll). Municipal treatment plant EMASESA is also acknowledged for providing the sewage sludge.Peer Reviewe
- …