98 research outputs found

    Novel ressortant swine H3N2 influenza A viruses in Germany

    Get PDF
    Analysis of 228 H3N2 swine influenza A virus isolates collected between 2003 and 2015 in Germany revealed important changes in molecular epidemiology. The data indicate that a novel reassortant, Rietberg/2014-like swine H3N2, emerged in February 2014 in Northern Germany. It is comprised of a hemagglutinin gene of seasonal H3N2 (A/Denmark/129/2005-like), a neuraminidase gene of Emmelsbuell/2009-like swine H1N2 and the internal gene cassette of pandemic H1N1 viruses. Together with Danish swine H3N2 strains of 2013–2015 with identical genome layout, the Rietberg/2014-like viruses represent a second swine H3N2 lineage which cocirculates with a variant of the Gent/1984-like swine H3N2 lineage. This variant, named Gent1984/Diepholz-like swine H3N2, has a Gent/1984-like HA and a Diepholz/2008-like NA; the origin of the internal gene cassette likely derived from avian-like swine H1N1. The first isolate of the Gent1984/Diepholz reassortant emerged in Northern Germany in September 2011 whereas the last German Gent/1984-like isolate was collected in October 2011.Peer Reviewe

    Evolution of Poliovirus Type I during 5.5 Years of Prolonged Enteral Replication in an Immunodeficient Patient

    Get PDF
    AbstractPoliovirus type 1 was isolated from an immunodeficient patient 4 days after onset of paresis (IS1) and after 5.5 years of prolonged enteral virus replication (IS2). Antigenic characterization revealed that IS1 was Sabin 1-like, whereas IS2 reacted like poliovirus 1 Mahoney. Complete genomic sequencing demonstrated the phylogenetic relationship (94.9% identity) of IS1 and IS2, which differed from the most closely related Sabin 1 by 5.4 and 8.3%, respectively. Both isolates had revertant-like mutations at nucleotides 480 and 6203. Deduced amino acid sequences indicated significant changes between IS1 and IS2 at the neutralizing antigenic site 1. Prolonged enteral replication, evolution, and shedding of poliovirus by immunodeficient patients should be considered in the poliovirus eradication strategy

    A 40-nm 256-Kb Half-Select Resilient 8T SRAM with Sequential Writing Technique

    Get PDF
    The interferon-induced dynamin-like MxA GTPase restricts the replication of influenza A viruses. We identified adaptive mutations in the nucleoprotein (NP) of pandemic strains A/Brevig Mission/1/1918 (1918) and A/Hamburg/4/2009 (pH1N1) that confer MxA resistance. These resistance-associated amino acids in NP differ between the two strains but form a similar discrete surface-exposed cluster in the body domain of NP, indicating that MxA resistance evolved independently. The 1918 cluster was conserved in all descendent strains of seasonal influenza viruses. Introduction of this cluster into the NP of the MxA-sensitive influenza virus A/Thailand/1(KAN-1)/04 (H5N1) resulted in a gain of MxA resistance coupled with a decrease in viral replication fitness. Conversely, introduction of MxA-sensitive amino acids into pH1N1 NP enhanced viral growth in Mx-negative cells. We conclude that human MxA represents a barrier against zoonotic introduction of avian influenza viruses and that adaptive mutations in the viral NP should be carefully monitored

    A novel cGUUAg tetraloop structure with a conserved yYNMGg-type backbone conformation from cloverleaf 1 of bovine enterovirus 1 RNA

    Get PDF
    The 5′-terminal cloverleaf (CL)-like RNA structures are essential for the initiation of positive- and negative-strand RNA synthesis of entero- and rhinoviruses. SLD is the cognate RNA ligand of the viral proteinase 3C (3C(pro)), which is an indispensable component of the viral replication initiation complex. The structure of an 18mer RNA representing the apical stem and the cGUUAg D-loop of SLD from the first 5′-CL of BEV1 was determined in solution to a root-mean-square deviation (r.m.s.d.) (all heavy atoms) of 0.59 Å (PDB 1Z30). The first (antiG) and last (synA) nucleotide of the D-loop forms a novel ‘pseudo base pair’ without direct hydrogen bonds. The backbone conformation and the base-stacking pattern of the cGUUAg-loop, however, are highly similar to that of the coxsackieviral uCACGg D-loop (PDB 1RFR) and of the stable cUUCGg tetraloop (PDB 1F7Y) but surprisingly dissimilar to the structure of a cGUAAg stable tetraloop (PDB 1MSY), even though the cGUUAg BEV D-loop and the cGUAAg tetraloop differ by 1 nt only. Together with the presented binding data, these findings provide independent experimental evidence for our model [O. Ohlenschläger, J. Wöhnert, E. Bucci, S. Seitz, S. Häfner, R. Ramachandran, R. Zell and M. Görlach (2004) Structure, 12, 237–248] that the proteinase 3C(pro) recognizes structure rather than sequence

    Highly divergent CRESS DNA and picorna-like viruses associated with bleached thalli of the green seaweed <i>Ulva</i>

    Get PDF
    Marine macroalgae (seaweeds) are important primary producers and foundation species in coastal ecosystems around the world. Seaweeds currently contribute to an estimated 51% of the global mariculture production, with a long-term growth rate of 6% per year, and an estimated market value of more than US$11.3 billion. Viral infections could have a substantial impact on the ecology and aquaculture of seaweeds, but surprisingly little is known about virus diversity in macroalgal hosts. Using metagenomic sequencing, we characterized viral communities associated with healthy and bleached specimens of the commercially important green seaweed Ulva. We identified 20 putative new and divergent viruses, of which the majority belonged to the Circular Rep-Encoding Single-Stranded (CRESS) DNA viruses [single-stranded (ss)DNA genomes], Durnavirales [double-stranded (ds)RNA], and Picornavirales (ssRNA). Other newly identified RNA viruses were related to the Ghabrivirales, the Mitoviridae, and the Tombusviridae. Bleached Ulva samples contained particularly high viral read numbers. While reads matching assembled CRESS DNA viruses and picorna-like viruses were nearly absent from the healthy Ulva samples (confirmed by qPCR), they were very abundant in the bleached specimens. Therefore, bleaching in Ulva could be caused by one or a combination of the identified viruses but may also be the result of another causative agent or abiotic stress, with the viruses simply proliferating in already unhealthy seaweed tissue. This study highlights how little we know about the diversity and ecology of seaweed viruses, especially in relation to the health and diseases of the algal host, and emphasizes the need to better characterize the algal virosphere. IMPORTANCE Green seaweeds of the genus Ulva are considered a model system to study microbial interactions with the algal host. Remarkably little is known, however, about viral communities associated with green seaweeds, especially in relation to the health of the host. In this study, we characterized the viral communities associated with healthy and bleached Ulva. Our findings revealed the presence of 20 putative novel viruses associated with Ulva, encompassing both DNA and RNA viruses. The majority of these viruses were found to be especially abundant in bleached Ulva specimens. This is the first step toward understanding the role of viruses in the ecology and aquaculture of this green seaweed.</p

    Identification of New, Functionally Relevant Mutations in the Coding Regions of the Human Fos and Jun Proto-Oncogenes in Rheumatoid Arthritis Synovial Tissue

    Get PDF
    In rheumatoid arthritis (RA), the expression of many pro-destructive/pro-inflammatory proteins depends on the transcription factor AP-1. Therefore, our aim was to analyze the presence and functional relevance of mutations in the coding regions of the AP-1 subunits of the fos and jun family in peripheral blood (PB) and synovial membranes (SM) of RA and osteoarthritis patients (OA, disease control), as well as normal controls (NC). Using the non-isotopic RNAse cleavage assay, one known polymorphism (T252C: silent; rs1046117; present in RA, OA, and NC) and three novel germline mutations of the cfos gene were detected: (i) C361G/A367G: Gln121Glu/Ile123Val, denoted as “fos121/123”; present only in one OA sample; (ii) G374A: Arg125Lys, “fos125”; and (iii) C217A/G374A: Leu73Met/Arg125Lys, “fos73/125”, the latter two exclusively present in RA. In addition, three novel somatic cjun mutations (604–606ΔCAG: ΔGln202, “jun202”; C706T: Pro236Ser, “jun236”; G750A: silent) were found exclusively in the RA SM. Tansgenic expression of fos125 and fos73/125 mutants in NIH-3T3 cells induced an activation of reporter constructs containing either the MMP-1 (matrix metalloproteinase) promoter (3- and 4-fold, respectively) or a pentameric AP-1 site (approximately 5-fold). Combined expression of these two cfos mutants with cjun wildtype or mutants (jun202, jun236) further enhanced reporter expression of the pentameric AP-1 construct. Finally, genotyping for the novel functionally relevant germline mutations in 298 RA, 288 OA, and 484 NC samples revealed no association with RA. Thus, functional cfos/cjun mutants may contribute to local joint inflammation/destruction in selected patients with RA by altering the transactivation capacity of AP-1 complexes

    Laser Spectroscopic Technique for Direct Identification of a Single Virus I: FASTER CARS

    Get PDF
    From the famous 1918 H1N1 influenza to the present COVID-19 pandemic, the need for improved virial detection techniques is all too apparent. The aim of the present paper is to show that identification of individual virus particles in clinical sample materials quickly and reliably is near at hand. First of all, our team has developed techniques for identification of virions based on a modular atomic force microscopy (AFM). Furthermore, Femtosecond Adaptive Spectroscopic Techniques with Enhanced Resolution via Coherent Anti-Stokes Raman Scattering (FASTER CARS) [1] using tip-enhanced techniques markedly improves the sensitivity.Comment: 16 pages, 3 figure
    • …
    corecore