683 research outputs found
Proper Motions of PSRs B1757-24 and B1951+32: Implications for Ages and Associations
Over the last decade, considerable effort has been made to measure the proper
motions of the pulsars B1757-24 and B1951+32 in order to establish or refute
associations with nearby supernova remnants and to understand better the
complicated geometries of their surrounding nebulae. We present proper motion
measurements of both pulsars with the Very Large Array, increasing the time
baselines of the measurements from 3.9 yr to 6.5 yr and from 12.0 yr to 14.5
yr, respectively, compared to previous observations. We confirm the
non-detection of proper motion of PSR B1757-24, and our measurement of (mu_a,
mu_d) = (-11 +/- 9, -1 +/- 15) mas yr^{-1} confirms that the association of PSR
B1757-24 with SNR G5.4-1.2 is unlikely for the pulsar characteristic age of
15.5 kyr, although an association can not be excluded for a significantly
larger age. For PSR B1951+32, we measure a proper motion of (mu_a, mu_d) =
(-28.8 +/- 0.9, -14.7 +/- 0.9) mas yr^{-1}, reducing the uncertainty in the
proper motion by a factor of two compared to previous results. After correcting
to the local standard of rest, the proper motion indicates a kinetic age of ~51
kyr for the pulsar, assuming it was born near the geometric center of the
supernova remnant. The radio-bright arc of emission along the pulsar proper
motion vector shows time-variable structure, but moves with the pulsar at an
approximately constant separation ~2.5", lending weight to its interpretation
as a shock structure driven by the pulsar.Comment: LaTeX file uses emulateapj.cls; 7 pages, 4 figures, to be published
ApJ February 10, 2008, v674 p271-278. Revision reflects journal formatting;
there are no substantial revision
Giant lasing effect in magnetic nanoconductors
We propose a new principle for a compact solid-state laser in the 1-100 THz
regime. This is a frequency range where attempts to fabricate small size lasers
up till now have met severe technical problems. The proposed laser is based on
a new mechanism for creating spin-flip processes in ferromagnetic conductors.
The mechanism is due to the interaction of light with conduction electrons; the
interaction strength, being proportional to the large exchange energy, exceeds
the Zeeman interaction by orders of magnitude. On the basis of this
interaction, a giant lasing effect is predicted in a system where a population
inversion has been created by tunneling injection of spin-polarized electrons
from one ferromagnetic conductor to another -- the magnetization of the two
ferromagnets having different orientations. Using experimental data for
ferromagnetic manganese perovskites with nearly 100% spin polarization we show
the laser frequency to be in the range 1-100 THz. The optical gain is estimated
to be of order 10^7 cm^{-1}, which exceeds the gain of conventional
semiconductor lasers by 3 or 4 orders of magnitude. A relevant experimental
study is proposed and discussed.Comment: 4 pages, 3 figure
Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps
We investigate single ions of in Paul traps for quantum
information processing. Superpositions of the S electronic ground state
and the metastable D state are used to implement a qubit. Laser light
on the S D transition is used for the
manipulation of the ion's quantum state. We apply sideband cooling to the ion
and reach the ground state of vibration with up to 99.9% probability. Starting
from this Fock state , we demonstrate coherent quantum state
manipulation. A large number of Rabi oscillations and a ms-coherence time is
observed. Motional heating is measured to be as low as one vibrational quantum
in 190 ms. We also report on ground state cooling of two ions.Comment: 12 pages, 6 figures. submitted to Journal of Modern Optics, Special
Issue on Quantum Optics: Kuehtai 200
A Proper Motion for the Pulsar Wind Nebula G359.23-0.82, "the Mouse," Associated with the Energetic Radio Pulsar J1747-2958
The "Mouse" (PWN G359.23-0.82) is a spectacular bow shock pulsar wind nebula,
powered by the radio pulsar J1747-2958. The pulsar and its nebula are presumed
to have a high space velocity, but their proper motions have not been directly
measured. Here we present 8.5 GHz interferometric observations of the Mouse
nebula with the Very Large Array, spanning a time baseline of 12 yr. We measure
eastward proper motion for PWN G359.23-0.82 (and hence indirectly for PSR
J1747-2958) of 12.9+/-1.8 mas/yr, which at an assumed distance of 5 kpc
corresponds to a transverse space velocity of 306+/-43 km/s. Considering
pressure balance at the apex of the bow shock, we calculate an in situ hydrogen
number density of approximately 1.0(-0.2)(+0.4) cm^(-3) for the interstellar
medium through which the system is traveling. A lower age limit for PSR
J1747-2958 of 163(-20)(+28) kyr is calculated by considering its potential
birth site. The large discrepancy with the pulsar's spin-down age of 25 kyr is
possibly explained by surface dipole magnetic field growth on a timescale ~15
kyr, suggesting possible future evolution of PSR J1747-2958 to a different
class of neutron star. We also argue that the adjacent supernova remnant
G359.1-0.5 is not physically associated with the Mouse system but is rather an
unrelated object along the line of sight.Comment: 8 pages, 4 figures, emulateapj format. Accepted for publication in
The Astrophysical Journa
VirtuWind: Virtual and programmable industrial network prototype deployed in operational wind park.
With anticipated exponential growth of connected devices, future industrial networks require an open solutions architecture facilitated by standards and a strong ecosystem. Such solutions should also deal with range of quality of service requirements imposed by industrial networks. Preserving strict quality of service is particularly challenging when services pass across domains of multiple provides. VirtuWind aims to develop and demonstrate a Software Defined Networking and Network Function Virtualization ecosystem, based on an open, modular and secure framework to address stringent requirements of the industrial networks. A prototype of the framework for intra-domain and inter-domain scenarios will be showcased in real Wind Parks, as a representative use case of industrial networks. This paper details this vision and explains steps forward
Quantum state engineering on an optical transition and decoherence in a Paul trap
A single Ca+ ion in a Paul trap has been cooled to the ground state of
vibration with up to 99.9% probability. Starting from this Fock state |n=0> we
have demonstrated coherent quantum state manipulation on an optical transition.
Up to 30 Rabi oscillations within 1.4 ms have been observed. We find a similar
number of Rabi oscillations after preparation of the ion in the |n=1> Fock
state. The coherence of optical state manipulation is only limited by laser and
ambient magnetic field fluctuations. Motional heating has been measured to be
as low as one vibrational quantum in 190 ms.Comment: 4 pages, 5 figure
Calculations of the A_1 phonon frequency in photoexcited Tellurium
Calculations of the A_1 phonon frequency in photoexcited tellurium are
presented. The phonon frequency as a function of photoexcited carrier density
and phonon amplitude is determined. Recent pump probe experiments are
interpreted in the light of these calculatons. It is proposed that, in
conjunction with measurements of the phonon period in ultra-fast pump-probe
reflectivity experiments, the calculated frequency shifts can be used to infer
the evolution of the density of photoexcited carriers on a sub-picosecond
time-scale.Comment: 15 pages Latex, 3 postscript figure
Dirac-Foldy term and the electromagnetic polarizability of the neutron
We reconsider the Dirac-Foldy contribution to the neutron electric
polarizability. Using a Dirac equation approach to neutron-nucleus scattering,
we review the definitions of Compton continuum (), classical
static (), and Schr\"{o}dinger () polarizabilities
and discuss in some detail their relationship. The latter is the
value of the neutron electric polarizability as obtained from an analysis using
the Schr\"{o}dinger equation. We find in particular , where is the magnitude of the magnetic moment
of a neutron of mass . However, we argue that the static polarizability
is correctly defined in the rest frame of the particle, leading to
the conclusion that twice the Dirac-Foldy contribution should be added to
to obtain the static polarizability .Comment: 11 pages, RevTeX, to appear in Physical Review
- …