229 research outputs found
Contributions of hard and soft blocks in the self-healing of metal-ligand-containing block copolymers
The main aim of this work is to study the respective contribution of the hard and soft blocks of a metal-ligand containing block copolymer to the self-healing behavior. To this aim, different block copolymers containing terpyridine were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. These block copolymers consisted of polystyrene as the hard block, n-butyl acrylate (BA) as soft block and terpyridine units as the ligand moiety placed at different locations in the soft block. These block copolymers were complexed with manganese(II) chloride to introduce transient crosslinks and, thus, self-healing behavior. Homopolymers with the hard and soft block only were also synthesized and tested. A quasi-irreversible crosslinking, i.e. by using nickel(II) nitrate, was performed in order to study the dynamics of the permanently (strongly) crosslinked network. Rheological master curves were generated enabling the determination of the terminal flow in these networks and the reversibility of the supramolecular interactions. Additionally, the macroscopic scratch healing behavior and the molecular mobility of the polymer chains in these supramolecular networks were investigated. A kinetic study of the scratch healing was performed to determine the similarities in temperature dependence for rheological relaxations and macroscopic scratch healing. In our previous work, we have explored the effect of strength of the reversible metal-ligand interaction and the effect of changing the ratio of hard to soft block. This work goes further in separating the individual contributions of the hard and soft blocks as well as the reversible interactions and to reveal their relative importance in the complex phenomenon of scratch healing
Functional cooperation between CREM and GCNF directs gene expression in haploid male germ cells
Cellular differentiation and development of germ cells critically depend on a coordinated activation and repression of specific genes. The underlying regulation mechanisms, however, still lack a lot of understanding. Here, we describe that both the testis-specific transcriptional activator CREMτ (cAMP response element modulator tau) and the repressor GCNF (germ cell nuclear factor) have an overlapping binding site which alone is sufficient to direct cell type-specific expression in vivo in a heterologous promoter context. Expression of the transgene driven by the CREM/GCNF site is detectable in spermatids, but not in any somatic tissue or at any other stages during germ cell differentiation. CREMτ acts as an activator of gene transcription whereas GCNF suppresses this activity. Both factors compete for binding to the same DNA response element. Effective binding of CREM and GCNF highly depends on composition and epigenetic modification of the binding site. We also discovered that CREM and GCNF bind to each other via their DNA binding domains, indicating a complex interaction between the two factors. There are several testis-specific target genes that are regulated by CREM and GCNF in a reciprocal manner, showing a similar activation pattern as during spermatogenesis. Our data indicate that a single common binding site for CREM and GCNF is sufficient to specifically direct gene transcription in a tissue-, cell type- and differentiation-specific manner
Intranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone
<p>Abstract</p> <p>Background</p> <p>The effect of neurotrophic factors in enhancing stroke-induced neurogenesis in the adult subventricular zone (SVZ) is limited by their poor blood-brain barrier (BBB) permeability.</p> <p>Intranasal administration is a noninvasive and valid method for delivery of neuropeptides into the brain, to bypass the BBB. We investigated the effect of treatment with intranasal transforming growth factor-β1 (TGF-β1) on neurogenesis in the adult mouse SVZ following focal ischemia. The modified Neurological Severity Scores (NSS) test was used to evaluate neurological function, and infarct volumes were determined from hematoxylin-stained sections. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) labeling was performed at 7 days after middle cerebral artery occlusion (MCAO). Immunohistochemistry was used to detect bromodeoxyuridine (BrdU) and neuron- or glia-specific markers for identifying neurogenesis in the SVZ at 7, 14, 21, 28 days after MCAO.</p> <p>Results</p> <p>Intranasal treatment of TGF-β1 shows significant improvement in neurological function and reduction of infarct volume compared with control animals. TGF-β1 treated mice had significantly less TUNEL-positive cells in the ipsilateral striatum than that in control groups. The number of BrdU-incorporated cells in the SVZ and striatum was significantly increased in the TGF-β1 treated group compared with control animals at each time point. In addition, numbers of BrdU- labeled cells coexpressed with the migrating neuroblast marker doublecortin (DCX) and the mature neuronal marker neuronal nuclei (NeuN) were significantly increased after intranasal delivery of TGF-β1, while only a few BrdU labeled cells co-stained with glial fibrillary acidic protein (GFAP).</p> <p>Conclusion</p> <p>Intranasal administration of TGF-β1 reduces infarct volume, improves functional recovery and enhances neurogenesis in mice after stroke. Intranasal TGF-β1 may have therapeutic potential for cerebrovascular disorders.</p
pKa Modulation of the Acid/Base Catalyst within GH32 and GH68: A Role in Substrate/Inhibitor Specificity?
Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst
Efficient Allele-Specific Targeting of LRRK2 R1441 Mutations Mediated by RNAi
Since RNA interference (RNAi) has the potential to discriminate between single nucleotide changes, there is growing interest in the use of RNAi as a promising therapeutical approach to target dominant disease-associated alleles. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been linked to dominantly inherited Parkinson's disease (PD). We focused on three LRRK2 mutations (R1441G/C and the more prevalent G2109S) hoping to identify shRNAs that would both recognize and efficiently silence the mutated alleles preferentially over the wild-type alleles. Using a luciferase-based reporter system, we identified shRNAs that were able to specifically target the R1441G and R1441C alleles with 80% silencing efficiency. The same shRNAs were able to silence specifically mRNAs encoding either partial or full-length mutant LRRK2 fusion proteins, while having a minimal effect on endogenous wild-type LRRK2 expression when transfected in 293FT cells. Shifting of the mutant recognition site (MRS) from position 11 to other sites (4 and 16, within the 19-mer window of our shRNA design) reduced specificity and overall silencing efficiency. Developing an allele-specific RNAi of G2019S was problematic. Placement of the MRS at position 10 resulted in efficient silencing of reporters (75–80%), but failed to discriminate between mutant and wild-type alleles. Shifting of the MRS to positions 4, 5, 15, 16 increased the specificity of the shRNAs, but reduced the overall silencing efficiency. Consistent with previous reports, these data confirm that MRS placement influences both allele-specificity and silencing strength of shRNAs, while further modification to hairpin design or MRS position may lead to the development of effective G2019S shRNAs. In summary, the effective shRNA against LRRK2 R1441 alleles described herein suggests that RNAi-based therapy of inherited Parkinson's disease is a viable approach towards developing effective therapeutic interventions for this serious neurodegenerative disease
Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning
The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation.McGovern Institute for Brain Research at MITNational Institutes of Health (U.S.) ((NIH grant 1-RC1-NS068103-01)National Institutes of Health (U.S.) (NIH grant R01-MH084966)Roberto Rocca Education Program (Fellowship)Massachusetts Institute of Technology. Undergraduate Research Opportunities Program (Fellowship)Italy. Ministero dell'istruzione, dell'università e della ricerca (MIUR grant RBIN04H5AS)Italy. Ministero dell'istruzione, dell'università e della ricerca (MIUR grant RBLA03FLJC)Italy. Ministero dell'istruzione, dell'università e della ricerca (FIRB n. RBAP10L8TY
Insights into the Mechanism of Bovine CD38/NAD+Glycohydrolase from the X-Ray Structures of Its Michaelis Complex and Covalently-Trapped Intermediates
Bovine CD38/NAD+glycohydrolase (bCD38) catalyses the hydrolysis of NAD+ into nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose (cADPR). We solved the crystal structures of the mono N-glycosylated forms of the ecto-domain of bCD38 or the catalytic residue mutant Glu218Gln in their apo state or bound to aFNAD or rFNAD, two 2′-fluorinated analogs of NAD+. Both compounds behave as mechanism-based inhibitors, allowing the trapping of a reaction intermediate covalently linked to Glu218. Compared to the non-covalent (Michaelis) complex, the ligands adopt a more folded conformation in the covalent complexes. Altogether these crystallographic snapshots along the reaction pathway reveal the drastic conformational rearrangements undergone by the ligand during catalysis with the repositioning of its adenine ring from a solvent-exposed position stacked against Trp168 to a more buried position stacked against Trp181. This adenine flipping between conserved tryptophans is a prerequisite for the proper positioning of the N1 of the adenine ring to perform the nucleophilic attack on the C1′ of the ribofuranoside ring ultimately yielding cADPR. In all structures, however, the adenine ring adopts the most thermodynamically favorable anti conformation, explaining why cyclization, which requires a syn conformation, remains a rare alternate event in the reactions catalyzed by bCD38 (cADPR represents only 1% of the reaction products). In the Michaelis complex, the substrate is bound in a constrained conformation; the enzyme uses this ground-state destabilization, in addition to a hydrophobic environment and desolvation of the nicotinamide-ribosyl bond, to destabilize the scissile bond leading to the formation of a ribooxocarbenium ion intermediate. The Glu218 side chain stabilizes this reaction intermediate and plays another important role during catalysis by polarizing the 2′-OH of the substrate NAD+. Based on our structural analysis and data on active site mutants, we propose a detailed analysis of the catalytic mechanism
Genetics of human hydrocephalus
Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human hydrocephalus. This review summarizes the recent findings on this issue among human and animal models, especially with reference to the molecular genetics, pathological, physiological and cellular studies, and identifies future research directions
Temporally Regulated Traffic of HuR and Its Associated ARE-Containing mRNAs from the Chromatoid Body to Polysomes during Mouse Spermatogenesis
International audienceBACKGROUND: In mammals, a temporal disconnection between mRNA transcription and protein synthesis occurs during late steps of germ cell differentiation, in contrast to most somatic tissues where transcription and translation are closely linked. Indeed, during late stages of spermatogenesis, protein synthesis relies on the appropriate storage of translationally inactive mRNAs in transcriptionally silent spermatids. The factors and cellular compartments regulating mRNA storage and the timing of their translation are still poorly understood. The chromatoid body (CB), that shares components with the P. bodies found in somatic cells, has recently been proposed to be a site of mRNA processing. Here, we describe a new component of the CB, the RNA binding protein HuR, known in somatic cells to control the stability/translation of AU-rich containing mRNAs (ARE-mRNAs). METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of cell imagery and sucrose gradient fractionation, we show that HuR localization is highly dynamic during spermatid differentiation. First, in early round spermatids, HuR colocalizes with the Mouse Vasa Homolog, MVH, a marker of the CB. As spermatids differentiate, HuR exits the CB and concomitantly associates with polysomes. Using computational analyses, we identified two testis ARE-containing mRNAs, Brd2 and GCNF that are bound by HuR and MVH. We show that these target ARE-mRNAs follow HuR trafficking, accumulating successively in the CB, where they are translationally silent, and in polysomes during spermatid differentiation. CONCLUSIONS/SIGNIFICANCE: Our results reveal a temporal regulation of HuR trafficking together with its target mRNAs from the CB to polysomes as spermatids differentiate. They strongly suggest that through the transport of ARE-mRNAs from the CB to polysomes, HuR controls the appropriate timing of ARE-mRNA translation. HuR might represent a major post-transcriptional regulator, by promoting mRNA storage and then translation, during male germ cell differentiation
- …