232 research outputs found

    An Eye for Possibilities in the Development of Children with Cerebral Palsy: Neurobiology and Neuropsychology in a Cultural-Historical Dynamic Understanding

    Get PDF
    Taking children with Cerebral Palsy (CP) as an example, the article seeks an understanding ofchildren with disabilities that connects neuropsychological theories of neural development withthe situated cognition perspective and the child as an active participant in its social practices. Theearly brain lesion of CP is reconceptualised as a neurobiological constraint that exists in therelations between the neural, cognitive and social levels. Through a multi-method study of twochildren with CP, it is analysed how neurobiological constraints arise, evolve and sometimes areresolved through local matches between the child and its social practices. The result is discussedas support of a developmental science approach that includes processes at the social practice levelalong with knowledge of biological processes

    The central role of Italy in the spatial spread of USUTU virus in Europe

    Get PDF
    USUTU virus (USUV) is an arbovirus maintained in the environment through a bird-mosquito enzootic cycle. Previous surveillance plans highlighted the endemicity of USUV in North-eastern Italy. In this work, we sequenced 138 new USUV full genomes from mosquito pools (Culex pipiens) and wild birds collected in North-eastern Italy and we investigated the evolutionary processes (phylogenetic analysis, selection pressure and evolutionary time-scale analysis) and spatial spread of USUV strains circulating in the European context and in Italy, with a particular focus on North-eastern Italy. Our results confirmed the circulation of viruses belonging to four different lineages in Italy (EU1, EU2, EU3 and EU4), with the newly sequenced viruses from the North-eastern regions, Veneto and Friuli Venezia Giulia, belonging to the EU2 lineage and clustering into two different sub-lineages, EU2-A and EU2-B. Specific mutations characterize each European lineage and geographic location seem to have shaped their phylogenetic structure. By investigating the spatial spread in Europe, we were able to show that Italy acted mainly as donor of USUV to neighbouring countries. At a national level, we identified two geographical clusters mainly circulating in Northern and North-western Italy, spreading both northward and southward. Our analyses provide important information on the spatial and evolutionary dynamics of USUTU virus that can help to improve surveillance plans and control strategies for this virus of increasing concern for human health

    Orthogonal methods based ant colony search for solving continuous optimization problems

    Get PDF
    Research into ant colony algorithms for solving continuous optimization problems forms one of the most significant and promising areas in swarm computation. Although traditional ant algorithms are designed for combinatorial optimization, they have shown great potential in solving a wide range of optimization problems, including continuous optimization. Aimed at solving continuous problems effectively, this paper develops a novel ant algorithm termed "continuous orthogonal ant colony" (COAC), whose pheromone deposit mechanisms would enable ants to search for solutions collaboratively and effectively. By using the orthogonal design method, ants in the feasible domain can explore their chosen regions rapidly and e±ciently. By implementing an "adaptive regional radius" method, the proposed algorithm can reduce the probability of being trapped in local optima and therefore enhance the global search capability and accuracy. An elitist strategy is also employed to reserve the most valuable points. The performance of the COAC is compared with two other ant algorithms for continuous optimization of API and CACO by testing seventeen functions in the continuous domain. The results demonstrate that the proposed COAC algorithm outperforms the others

    Phylogenetic Structure and Metabolic Properties of Microbial Communities in Arsenic-Rich Waters of Geothermal Origin

    Get PDF
    Arsenic (As) is a toxic element released in aquatic environments by geogenic processes or anthropic activities. To counteract its toxicity, several microorganisms have developed mechanisms to tolerate and utilize it for respiratory metabolism. However, still little is known about identity and physiological properties of microorganisms exposed to natural high levels of As and the role they play in As transformation and mobilization processes. This work aims to explore the phylogenetic composition and functional properties of aquatic microbial communities in As-rich freshwater environments of geothermal origin and to elucidate the key microbial functional groups that directly or indirectly may influence As-transformations across a natural range of geogenic arsenic contamination. Distinct bacterial communities in terms of composition and metabolisms were found. Members of Proteobacteria, affiliated to Alpha- and Betaproteobacteria were mainly retrieved in groundwaters and surface waters, whereas Gammaproteobacteria were the main component in thermal waters. Most of the OTUs from thermal waters were only distantly related to 16S rRNA gene sequences of known taxa, indicating the occurrence of bacterial biodiversity so far unexplored. Nitrate and sulfate reduction and heterotrophic As(III)-oxidization were found as main metabolic traits of the microbial cultivable fraction in such environments. No growth of autotrophic As(III)-oxidizers, autotrophic and heterotrophic As(V)-reducers, Fe-reducers and oxidizers, Mn-reducers and sulfide oxidizers was observed. The ars genes, involved in As(V) detoxifying reduction, were found in all samples whereas aioA [As(III) oxidase] and arrA genes [As(V) respiratory reductase] were not found. Overall, we found that As detoxification processes prevailed over As metabolic processes, concomitantly with the intriguing occurrence of novel thermophiles able to tolerate high levels of As

    Simple, Dark, and Deep: Photographic Theorizations of As-Yet Schools

    Get PDF
    Within the space of this collective image/text article, 18 photographic imagemakers and 4 respondents consider deeply and dialogically a quote from William Ayers’ 2016 book Teaching with Conscience in an Imperfect World: An Invitation. The resulting constellation of images and words (1) realizes a space within which works of art, specifically photographs, operate as centers of meaning to generate educational implications, and (2) theorizes a pedagogy that resists unilateral prescriptions and is instead anchored around openness, expansion, and individualization. The paper begins with a few short pieces from Sarah Pfohl, including an overview of Ayers’ book and ideas from writings on progressive education, object-based teaching and learning, and close/slow looking to position works of art as sites of rich meaning. While contemporary schooling often drives toward monolithic, numerical representations of the learners in its care, the article employs postdigital gestures to argue that learners have more in common with works of art than numbers, and thus, attention to artworks can open valuable implications for teaching and learning. The diverse group of images that follow offer an emerging portrait of teaching practice as a set of constantly shifting constellations moving across deep time and space from the intensely specific to the wide. Four texts think more about schools, education, and art. Finally, there is a postscript from Bill Ayers himself

    Ant colony optimization applied to water distribution system design: Comparative study of five algorithms

    Get PDF
    Water distribution systems WDSs are costly infrastructure, and much attention has been given to the application of optimization methods to minimize design costs. In previous studies, ant colony optimization ACO has been found to perform extremely competitively for WDS optimization. In this paper, five ACO algorithms are tested: one basic algorithm ant system and four more advanced algorithms ant colony system, elitist ant system, elitist-rank ant system ASrank , and max-min ant system MMAS . Experiments are carried out to determine their performance on four WDS case studies, three of which have been considered widely in the literature. The findings of the study show that some ACO algorithms are very successful for WDS design, as two of the ACO algorithms MMAS and ASrank outperform all other algorithms applied to these case studies in the literature.Aaron C. Zecchin, Holger R. Maier, Angus R. Simpson, Michael Leonard, and John B. Nixo

    Development of broad-spectrum human monoclonal antibodies for rabies post-exposure prophylaxis

    Get PDF
    Currently available rabies post-exposure prophylaxis (PEP) for use in humans includes equine or human rabies immunoglobulins (RIG). The replacement of RIG with an equally or more potent and safer product is strongly encouraged due to the high costs and limited availability of existing RIG. In this study, we identified two broadly neutralizing human monoclonal antibodies that represent a valid and affordable alternative to RIG in rabies PEP. Memory B cells from four selected vaccinated donors were immortalized and monoclonal antibodies were tested for neutralizing activity and epitope specificity. Two antibodies, identified as RVC20 and RVC58 (binding to antigenic site I and III, respectively), were selected for their potency and broad-spectrum reactivity. In vitro, RVC20 and RVC58 were able to neutralize all 35 rabies virus (RABV) and 25 non-RABV lyssaviruses. They showed higher potency and breath compared to antibodies under clinical development (namely CR57, CR4098, and RAB1) and commercially available human RIG. In vivo, the RVC20-RVC58 cocktail protected Syrian hamsters from a lethal RABV challenge and did not affect the endogenous hamster post-vaccination antibody response

    Solving the multi-period water distribution network design problem with a hybrid simulated anealling

    Get PDF
    This work presents an optimization technique based on Simulated Annealing (SA) to solve the Water Distribution Network Design problem, considering multi-period restrictions with time varying demand patterns. The design optimization of this kind of networks is an important issue in modern cities, since a safe, adequate, and accessible supply of potable water is one of the basic necessities of any human being. Given the complexity of this problem, the SA is improved with a local search procedure, yielding a hybrid SA, in order to obtain good quality networks designs. Additionally, four variants of this algorithm based on different cooling schemes are introduced and analyzed. A broad experimentation using different benchmark networks is carried out to test our proposals. Moreover, a comparison with an approach from the literature reveals the goodness to solve this network design problem.Fil: Bermudez, Carlos Alberto. Universidad Nacional de la Pampa. Facultad de IngenierĂ­a; ArgentinaFil: Salto, Carolina. Universidad Nacional de la Pampa. Facultad de IngenierĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Confluencia; ArgentinaFil: Minetti, Gabriela Fabiana. Universidad Nacional de la Pampa. Facultad de IngenierĂ­a; Argentin

    Inverse laplace transform for transient-state fluid line network simulation

    Get PDF
    Inverse Laplace transform methods have a long history in the development of time-domain fluid line models. This paper presents a study combining the new Laplace-domain input/output (I/O) model derived from the network admittance matrix with the Fourier series expansion numerical inverse Laplace transform (NILT) to serve as a time-domain simulation model. A series of theorems are presented demonstrating the stability of the I/O model, which is important for the construction of the NILT method. In the previous work by the first author, the Fourier series expansion algorithm was studied, where qualitative relationships between the parameters and numerical errors were analyzed, and reliable parameter heuristics were developed. These heuristics are used for a series of numerical examples dealing with networks of 11, 35, 51, and 94 pipes by using five different pipe models. The examples are used as the basis from which the accuracy and numerical efficiency of the proposed NILT are compared to the standard method of characteristics (MOCs) model for transient pipeline networks. Findings show that, for all case studies considered, the proposed NILT is numerically efficient for the pipe types involving convolution operations, and it is accurate for networks composed of both linear and nonlinear pipe types.Aaron C. Zecchin, Martin F. Lambert and Angus R. Simpso
    • …
    corecore