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Abstract

As surveyed within Zecchin (2010), inverse Laplace transform methods have a long history

in the development of time-domain fluid line models. This paper presents a study combining

the new Laplace-domain input/output (I/O) model derived from the network admittance

matrix with the Fourier series expansion numerical inverse Laplace transform (NILT) to

serve as a time-domain simulation model. A series of theorems are presented demonstrat-

ing the stability of the I/O model, which is important for the construction of the NILT

method. In Zecchin (2010) the Fourier series expansion algorithm was studied, where quali-

tative relationships between the parameters and numerical errors were analysed, and reliable

parameter heuristics were developed. These heuristics are used for a series of numerical ex-

amples dealing with networks of 11, 35, 51 and 94 pipes using the five different pipe models.

The examples are used as the basis from which the accuracy and numerical efficiency of

the proposed NILT are compared to the standard method of characteristics (MOC) model

for transient pipeline networks. Findings show that not only is the proposed NILT is very

efficient numerically in comparison to the pipe types involving convolution operations, but

it is accurate for networks comprised of both linear and nonlinear pipe types.
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1. Introduction

The existence of fluid line networks within many natural and man made systems has

meant that stable, accurate and computationally efficient methods to model their transient

behaviour is of broad interest. Much of the research literature has focused on the use of

discrete partial differential equation (PDE) solvers, however, as outlined within Zecchin

(2010) there has been significant interest on the development of time-domain models based

on the inverse Laplace transform (ILT) of the Laplace-domain solutions of the fluid line

equations. These approaches possess many advantages over their discrete counterparts in

that they do not suffer from the stability, accuracy, and computational efficiency issues

associated with the grid-based computations of discrete methods.

Many of the ILT-based methods represent elegant and novel approaches to inverting the

Laplace transform (LT) of the fluid line equations. A limitation, however, is that most are

formulated for only single pipelines, with few being formulated for a limited class of com-

pound lines (Margolis and Yang, 1985; Yang and Tobler, 1991), and even fewer approaches

being able to deal with the case of general networks (Suo and Wylie, 1989; Kojima et al.,

2002). Despite this, no systematic and detailed study has been performed to compare ILT

methods to their discrete counterparts for general fluid line network structures. This paper

undertakes such a study. The time-domain numerical inverse Laplace transform (NILT)

method adopted here consists of a combination of the Fourier series expansion method,

studied in detail in Zecchin (2010), combined with the recently developed Laplace-domain

network admittance model (Zecchin et al., 2009b,a). New results concerning the stability

of the input/output (I/O) form of this model are presented. The proposed time-domain

NILT method is compared to the method of characteristics (MOC) in terms of accuracy and

computational efficiency for 20 different case studies (four different network structures and

five different pipeline model types).

The paper is structured as follows. The system of fluid line network equations is outlined

in Section 2, where the Laplace-domain solution of this system from Zecchin et al. (2009b)

is described. Section 3 the outlines the framework for the proposed NILT model based
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on the Laplace-domain in three stages: first the I/O Laplace-domain model is derived and

its stability is proved; second the I/O time-domain model based on the inverse Laplace

transform is outlined; and last the adopted NILT from Crump (1976) is presented. The case

study details for the numerical experiments are outlined in Section 4. Section 5 presents the

results and provides analysis for a range of different numerical experiments. The numerical

experiments take two different forms: a study of the accuracy of the NILT; a study of the

computational efficiency of the NILT. The conclusions are given in Section 6.

2. Laplace-Domain Network Model

To facilitate the discussion of the fluid line network equations, it is convenient to describe

a network as a connected graph G (N ,Λ) (Diestel, 2000) consisting of the node set N =

{1, 2, ..., nn}, and the link set Λ = {λ1, λ2, ..., λnΛ
} and where λj = (iuj, idj) where iuj, idj ∈ N

are the upstream and downstream nodes of link j respectively. Each node is associated with

a lumped hydraulic component that is connected to a number of links, and each link is

associated with a distributed pipe element where the directed nature of the link describes

the positive flow direction sign convention of the element. There are two link sets associated

with each node, these are Λui and Λdi which correspond to the set of links directed from and

to node i respectively, that is Λui = {(i, k) , k ∈ N : (i, k) ∈ Λ} and Λdi = {(k, i) , k ∈ N :

(k, i) ∈ Λ}). Note that the first set corresponds to the links whose upstream node is i and

the second set correspond to the links whose downstream node is i. With the given notation,

a fluid line network be defined as the pair (G(N ,Λ),P) where G(N ,Λ) is the network graph

of nodes N and links Λ, and P = {Pj : λj ∈ Λ} is the set of pipeline properties where Pj
are the properties for pipe j (i.e. length lj, diameter, roughness etc.). The state space of

the network (G(N ,Λ),P) is given by the distributions of pressure and flow along each line

of the network, which are given by

p (x, t) =


p1 (x1, t)

...

pnΛ
(xnΛ

, t)

 , q (x, t) =


q1 (x1, t)

...

qnΛ
(xnΛ

, t)

 , (1)
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respectively, where x = [x1 · · · xnΛ
]T is the vector of spatial coordinates, (i.e. x ∈ X =

X1 × · · · XnΛ
where Xj = [0, lj]), t ∈ R is time, and nΛ is the number of links.

2.1. Network equations

For a given network (G(N ,Λ),P), a time-domain simulation involves the computation

of the transient response of the states (1) for a specific set of specified initial and boundary

conditions. Each node either has a controlled nodal pressure (as in the case of a reservoir)

or a controlled nodal flow (as in the case of a controlled flow node or a junction). Therefore,

partitioning the set of nodes as N = NJ ∪Nd∪Nr where NJ is the set of junctions, Nd is the

set of demand nodes, and Nr is the set of reservoir nodes, the system of dynamic equations

governing the network states (1) is

∂pj
∂xj

+
ρ

A2
j

(
∂qj
∂t

+Rj [qj]

)
= 0, xj ∈ Xj, λj ∈ Λ, (2)

∂qj
∂xj

+
A2
j

ρc2
j

(
∂pj
∂t

+ Cj [pj]

)
= 0, xj ∈ Xj, λj ∈ Λ, (3)

pj(ϕji, t)− pk(ϕki, t) = 0, λj, λk ∈ Λi, i ∈ NJ ∪Nd (4)

pj(ϕji, t)− ψri(t) = 0, λj ∈ Λi, i ∈ Nr, (5)∑
λj∈Λdi

qj(lj, t)−
∑
λj∈Λui

qj(0, t) = 0, i ∈ NJ (6)

θdi(t) +
∑
λj∈Λdi

qj(lj, t)−
∑
λj∈Λui

qj(0, t) = 0, i ∈ Nd (7)

pj(x, 0) = p0
j(x), qj(x, 0) = q0

j (x), x ∈ Xj, λj ∈ Λ (8)

where: for the fluid lines ρ is the fluid density, cj, Aj, xj are the fluid line wavespeed,

the cross-sectional area, and the axial coordinate, and Rj and Cj are the integrodifferential

line resistance and compliance operators (Zecchin, 2010); for the nodes ψri is the controlled

temporally varying reservoir pressure for the reservoir nodes in the reservoir node set Nr,

θdi is the controlled temporally varying nodal demand for the demand nodes in the demand

node set Nd; p0
j and q0

j are the initial distribution of pressure and flow in each pipe λj ∈ Λ;

and ϕji = lj if λj ∈ Λdi and 0 otherwise.
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The network equations (2)-(8) can be divided into five groups: (2) and (3) are the

unsteady equations of motion and mass continuity for each fluid line; (4) and (5) are the

nodal equations of equal pressures in pipe ends connected to the same node for junctions

(nodes for which the inline pressure is the free variable) and reservoirs (nodes for which the

nodal flow is the free variable) respectively; (6) and (7) are the nodal equations of mass

conservation for junctions and demand nodes; and (8) are the initial conditions for the link

states and node states.

2.2. Laplace-domain network admittance matrix

Based on (2)-(8) with a homogeneous initial condition (8) and linearised Rj and Cj,

Zecchin et al. (2009b) derived the form of the network admittance matrix mapping from the

nodal pressures Ψ to the nodal flows Θ, where the nodal states are defined as

Ψ = [Ψ1 · · · Ψnn ]T , Θ = [Θ1 · · · Θnn ]T .

The main results of this work are briefly reviewed below.

The Laplace-domain solution of (2)-(3) can be organised into the end-to-end transfer

matrix admittance form (Goodson and Leonard, 1972)

 Qj(s, 0)

−Qj(s, lj)

 =
1

Zcj(s)

 coth Γj(s) − csch Γj(s)

− csch Γj(s) coth Γj(s)

Pj(s, 0)

Pj(s, lj)

 , (9)

where Γj is the propagation operator, and Zc is the characteristic impedance which are given

by

Γ(s) =
lj
cj

√
[s+Rj(s)] [s+ Cj(s)], Zcj(s) =

cjρ

Aj

√
s+Rj(s)

s+ Cj(s)

where Rj and Cj are the Laplace transforms of the linearised approximations of R and C

respectively (typically the only term requiring linearisation is the steady-state quadratic

term in R, as for turbulent flow, R[q] = R[q] + O
{

(q − qo)2} where qo is a reference flow

rate (Wylie and Streeter, 1993)). The admittance matrix functions for each link λ ∈ Λ can
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be organised into the matrix form Q(s,0)

−Q(s, l)

 =

 Zc
−1(s) coth Γ(s) −Zc

−1(s) csch Γ(s)

−Zc
−1(s) csch Γ(s) Zc

−1(s) coth Γ(s)

 P (s,0)

P (s, l)


with link state vectors

P (s,x) = [P1(s, x1), . . . , PnΛ
(s, xnΛ

)]T , Q(s,x) = [Q1(s, x1), . . . , QnΛ
(s, xnΛ

)]T ,

and the diagonal link function matrices

Γ(s) = diag {Γ1(s), . . . ,ΓnΛ
(s)} ,Zc(s) = diag {Zc1(s), . . . , ZcnΛ

(s)} ,

where x = [x1, . . . , xnΛ
]T is the vector of spatial coordinates, and x = 0 (x = l) corresponds

to all coordinates set at their start (or end) points. Defining the upstream and downstream

node incidence matrices as

{Nu}i,j =

1 if λj ∈ Λu,i

0 otherwise

, {Nd}i,j =

1 if λj ∈ Λd,i

0 otherwise

,

the upstream and downstream pressure and flow link variables can be related to the pressure

and flow nodal variables by the matrix equations P (s,0)

P (s, l)

 =
(
Nu Nd

)T
Ψ (s) ,

(
Nu Nd

) Q(s,0)

−Q(s, l)

 = Θ (s) ,

which are expressions of the pressure preservation and mass conservation for a simple node,

respectively (i.e. matrix versions of equations (4) and (6) respectively). Combining these

link and node relationship expressions with the link functions (10) yields an admittance
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matrix expression for the network dynamics

Y (s)Ψ(s) = Θ(s)

where Y (s) is the symetric nn × nn admittance matrix given by

Y (s) =
(
Nu Nd

) Zc
−1(s) coth Γ(s) −Zc

−1(s) csch Γ(s)

−Zc
−1(s) csch Γ(s) Zc

−1(s) coth Γ(s)

( Nu Nd

)T
(10)

which possesses the elementwise representation

{Y (s)}i,k =



∑
λj∈Λi

Z−1
cj (s) coth Γj(s) if k = i

−Z−1
cj (s) csch Γj(s) if λj ∈ Λi ∩ Λk

0 otherwise

. (11)

An important property of most physical systems is that they are strictly passive. This

means that the systems absorb or dissipate energy (Desoer and Vidyasagar, 1975), and is

defined by the requirement that, at any point in time, the cumulative energy transfered into

a system is greater than the energy transfered out of a system. It turns out that the nodal

admittance matrix Y represents a strictly passive system conditional on the strict passivity

of the network elements. This is defined within the following theorem.

Theorem 1. The network admittance matrix Y in (10) for the network (G(N ,Λ),P) is

strictly passive if the link admittance matrices for each λ ∈ Λ are strictly passive.

Proof. The matrix Y is strictly passive if (i) it is analytic in the open right hand complex

plane C+, (ii) represents the transform of a real valued function, and (iii) has the property

that Re {Y (s)} is strictly positive definite for s ∈ C+ (see Desoer and Vidyasagar (1975)

for details). As the terms in Y are simply additions of the terms in the link admittance

functions, properties (i) and (ii) are clearly satisfied if all link admittance matrices are
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strictly passive. For (iii), it is required that

xHRe {Y (s)}x > 0 for all x ∈ Cnn such that ||x|| > 0. (12)

on s ∈ C+. It can be demonstrated that the quadratic form in (12) can be expressed as

xHRe {Y (s)}x =
∑

(i,k)=λj∈Λ

xi
xk

H Re

 1

Zcj(s)

 coth Γj(s) − csch Γj(s)

− csch Γj(s) coth Γj(s)


xi
xk

 .
Each of the 2×2 quadratic terms within the summation involve the link admittance matrices

as in (9). Each of these terms is clearly nonnegative provided that the link admittance ma-

trices are strictly passive (i.e. they have a positive definite real part). Hence, the summation

is positive provided that ||x|| is nonzero.

Theorem 1 is conditional on the strict passivity of the link admittance functions. This

was demonstrated in Zecchin (2010) to be conditional on the strict passivity of the resistive

and compliance functions R and C. For all physically realisable models, R and C are strictly

passive as they do not create energy.

3. Framework for Network Time-Domain Simulations

The time-domain simulation of a (G(N ,Λ),P) network involves computing the time

varying unknown states of a network for a given hydraulic scenario, where a hydraulic

scenario is defined as a well posed specification of the boundary conditions for the network

(taking the initial conditions as homogeneous). Given a system with nr reservoirs, and nd

demand nodes (nn = nr +nd), in the context of the network equations (2)-(7), the boundary

conditions are the nodal demands θd (organised as a nd × 1 vector), and the reservoir

pressures ψr (organised as a nr × 1 vector). Within the context of an I/O model, these

boundary conditions serve as inputs, where the outputs can be taken as the unknown nodal

states, that is the nodal pressures at the demand nodes ψd (nd × 1) and the nodal flows at

the reservoir nodes θr (nr × 1). Given that the Laplace transforms of θd and ψr exist, the
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Laplace-domain expression of the I/O transfer function is given by

 Ψd (s)

Θr (s)

 = H(s)

 Θd (s)

Ψr (s)

 (13)

where H is the nn × nn I/O network transfer matrix. The focus in this section is the

development of a time-domain simulation model based on (13).

3.1. Laplace-domain input/output model

The Laplace-domain form of H is now derived, and its stability is demonstrated. Or-

dering the nodal state vectors of pressure and flow as

Ψ (s) =

 Ψd (s)

Ψr (s)

 , Θ (s) =

 Θd (s)

Θr (s)


the network matrix equation (10) can be expressed in the following partitioned form

 Y d (s) Y d-r (s)

Y r-d (s) Y r (s)

 Ψd (s)

Ψr (s)

 =

 Θd (s)

Θr (s)

 (14)

where Y d is the nd × nd system matrix for the subsystem comprised of the demand nodes,

Y r is the nr×nr system matrix for the subsystem comprised of the reservoir nodes, and Y d-r

(Y r-d) are the nd × nr (nr × nd) partitions of the network matrix that corresponding to the

nodal flow contribution at the demand (reservoir) nodes admitted from the nodal pressures

at the reservoir (demand) nodes. Note that Y d and Y r are symmetric and Y d-r = Y T
r-d.

Given this partitioning, Zecchin et al. (2009b) derived the I/O map (13) where

H(s) =

 Y −1
d (s) −Y −1

d (s)Y d-r (s)

Y r-d (s)Y −1
d (s) Y r (s)− Y r-d (s)Y −1

d (s)Y d-r (s)

 . (15)

For computational reasons, it is necessary that H is a stable map. The stability of

H is demonstrated to be dependent on the strict passivity of the network elements in the
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following theorem.

Theorem 2. For a given network (G(N ,Λ),P), the I/O transfer matrix H defined by (15)

is stable if all the admittance matrices for all links λ ∈ Λ are strictly passive.

Proof. The matrix H is stable provided all its elemental functions are analytic on s ∈ C+,

which holds only if Y r, Y d-r, Y r-d and Y −1
d all have analytic elemental functions within this

domain. As the matrices Y r, Y d-r, Y r-d are submatrices of the strictly passive Y , they are

thus analytic on s ∈ C+ (strict passivity of Y is ensured by Theorem 1). The matrix Y d

is strictly passive as it is a principal minor of the strictly passive Y (Zecchin, 2010). Hence

Y −1
d itself is also strictly passive (Zecchin, 2010), and being strictly passive, it is also stable

(Triverio et al., 2007).

3.2. Time-domain input/output model

By the convolution theorem of the ILT (Franklin et al., 2001), the time-domain repre-

sentation of (13) is given by

 ψd(t)

θr(t)

 =

∫ t

0

h(t− τ)

 θd(τ)

ψr(τ)

 dτ (16)

where the lower case symbols are the time-domain counterparts of their Laplace transforms.

Since the impulse response matrix h is not analytically available, for any time point t, the

computation of (16) first requires (i) the computation of h(τ) on τ ∈ [0, t] via the ILT of

H(s), and (ii) the convolution operation of h with the inputs. That is, the outputs are

computed by ∫ t

0

L−1 {H(s)} (t− τ)

 θd(τ)

ψr(τ)

 dτ. (17)

In the interest of computational efficiency, (17) can be calculated more efficiently by com-

puting the impulse response L−1 {H(s)} (τ), τ ∈ [0, t] a priori so that only the convolution

would require computation at each time point. This approach still requires the NILT of each
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elemental function of H , which is still computationally very expensive. A more computa-

tionally efficient strategy of calculating (16) is

 ψd(t)

θr(t)

 = L−1

H(s)

 Θd(s)

Ψr(s)

 (t), (18)

that is, the convolution is performed in the Laplace-domain, and the resulting function

is then inverted. Despite the fact that both approaches involve the calculation of H(s)

at discrete points along some contour s = a + iωi, i = 0 . . . , N , the calculation of (18) is

computationally simpler than (17) for two reasons:

1. Equation (18) requires a far reduced number of NILT calculations. As mentioned, (17)

involves the NILT of all the elemental functions of H(s), which comprises (nd +nr)×

(nd + nr) functions. In comparison, for the computation of the matrix multiplication

for (17) in the Laplace-domain, only (nd + nr) functions require numerical inversion,

which is the square root of the NILTs required by (17).

2. Equation (17) requires the calculation of a convolution at each time point, and (18)

does not. Despite the fact that, for a hydraulic scenario, the nodal boundary conditions

θd(t), and ψr(t) are typically specified as functions of time, the Laplace transforms

are typically analytically available. This fact reinforces the computational efficiency

of the convolution calculation in the Laplace-domain.

Therefore, given these merits (18) is the framework of the NILT model that has been adopted

in this research.

3.3. Numerical inverse Laplace transform

Given the Laplace transformable function f with Laplace transform F = L{f}, then the

function f can be expressed as the Bromwich contour integral over F given by

f(t) = L−1 {F} (t) =
1

2πi

∫ a+i∞

a−i∞
F (s)estds (19)

11



where a is any number such that the location of all singularities of F have a real part less

than a. For the application of interest here, the Laplace-domain function for the i-th output

is given by

F (s) = H i(s)

 Θd(s)

Ψr(s)

 (20)

where H i is the i-th row of H . From Theorem 2, it is known that all elemental functions

of H are stable. Therefore, given that θd and ψr are exponentially bounded functions, it

holds that appropriate values of the contour location a are given by a ≥ α where α is some

real number such that

|ψri(t)|, |θdj(t)| ≤Meαt, i = 1, . . . , nr, j = 1, . . . , nd

for t ∈ R+ where M is a real constant. For most scenarios of interest, the boundary

perturbations are of finite energy, or they approach a finite valued upper bound (such as a

step input resulting from a valve closure). In such cases, it holds that a > 0 is appropriate.

In all but the most simple instances, (19) can only be calculated using NILT methods.

The work Zecchin (2010) provided a detailed survey of methods dealing with simple pipeline

networks, for which analytic approximations to f can be obtained. As arbitrary networks

are under consideration here, numerical methods must be pursued. Within this work, the

Fourier series expansion algorithm (Crump, 1976; Abate and Whitt, 1992) is used as the

NILT approximation to f , and is given by

f(t) ≈ f̃(t|a,N,∆ω)

=
eat∆ω

π

[
F0

2
+

N∑
k=1

Re {Fk} cos (k∆ωt)− Im {Fk} sin (k∆ωt)

]
. (21)

where Fk = F (a+ ikπ∆ω), k = 0, 1, . . . , N , and ∆ω is the discretisation interval on the line

Re {s} = a (refer to (Zecchin, 2010) for details).

Given the harmonic nature of F (s) for pipe line systems, Zecchin (2010) proposed the

reparameterisation dealing with the number of harmonics used in the inversion NH , and the
12



Table 1: Case study details for the four networks. Square braces indicate the interval range of the properties.

Network property
Network case study

11-pipe 35-pipe 51-pipe 94-pipe

number of nodes 6 20 35 87
nodal demands (L/s) 126 [0.85, 117] [28, 142] [42, 420]
pipe diameters (mm) 240 [254, 1524] [305, 1524] [250, 1200]

pipe lengths (m) [457, 1372] [883, 3109] [450, 994] [10, 4800]

number of discretisations of each harmonic N∆, where the following relationships hold

N = NH ·N∆, ∆ω =
∆Ω

N∆

.

where ∆Ω is a nominal frequency bandwidth for the harmonics of the network.

4. Case Study Details

The primary interest within this paper is the suitability of the linear NILT approach

for the time-domain simulation of pipeline networks comprised of both linear and nonlinear

pipes. The important issues pertaining to the suitability of the NILT method are (i) the ac-

curacy of the method to approximate the true dynamics, and (ii) the relative computational

efficiency of the method with respect to alternative simulation approaches. To undertake

this analysis, many numerical experiments were undertaken comparing the proposed NILT

method combining (20) and (21) with the commonly used MOC approach (Chaudhry, 1987;

Wylie and Streeter, 1993). Within the experiments, 20 different case studies were considered

comprised of four different networks with five different pipeline models. These, as well as

the adopted parameter settings for the NILT are outlined in the following.

4.1. Case study networks

The four different networks used within in the study are depicted in Figures 1 to 4, and

their properties are summarised in Table 1. The 11-pipe network is adapted from Pudar and

13
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Figure 2: The 35-pipe network.

Liggett (1992), the 35-pipe and 51-pipe networks from Vı́tkovský (2001), and the 94-pipe

network from Datta and Sridharan (1994). Interested readers are referred to Zecchin (2010)

for all network details.

4.2. Pipeline models

Each of the networks were studied with five different pipe types, namely the laminar-

steady-friction (LSF) model (Wylie and Streeter, 1993), the turbulent-steady-friction (TSF)

model (Wylie and Streeter, 1993), the laminar-unsteady-friction (LUF) model (Zielke, 1968),

the turbulent-unsteady-friction (TUF) model (Vardy and Brown, 2007), and the viscoelastic
14
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Figure 3: The 51 pipe network.

(VE) model (Rieutord and Blanchard, 1979). The models LSF, TSF, LUF, and the TUF are

different forms of the resistive operator R, and VE is a different model for the compliance

operator C. The most basic steady-state models, LSF and TSF, are given by the quasi-steady

expressions

RLSF[q](x, t) = 32
ν

D2
q(x, t), RTSF[q](x, t) =

f

2DA
|q(x, t)|q(x, t)

where ν is the kinematic viscosity, and f is the Darcy-Weisbach friction factor (Wylie and

Streeter, 1993). The only nonlinearity within the all the models is the quadratic term in

RTSF which is linearised as

RTSF[q](x, t) =
fqo
AD

q(x, t)

where qo is the operating flow about which the linearisation is taken (the steady-state flow).

The steady-state models do not account for the influence of the time-varying cross-sectional

velocity profiles on the resistance function. Working from the basis of 2-D axisymetric flow,

Zielke (1968) and Vardy and Brown (2003, 2004, 2007) derived unsteady friction terms
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Figure 4: The 94-pipe network.

for laminar and turbulent flow, respectively. The incorporation of the the unsteady term

within the resistance function models takes the form of a convolution operation on the flow

acceleration, and these models are given by the following modifications on their steady-state

counterparts

RLUF[q](x, t) = RLSF[q](x, t) + 16
ν

D2

∫ t

0

wLUF(t− τ)
∂q

∂t
(x, τ)dτ

RTUF[q](x, t) = RTSF[q](x, t) + 16
ν

D2

∫ t

0

wTUF(t− τ)
∂q

∂t
(x, τ)dτ

where wLUF and wTUF are weighting functions.
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For all the models LSF, TSF, LUF, and TUF, the pipe is taken as elastic with C ≡ 0,

however, for the VE model, the compliance operator is given by Rieutord and Blanchard

(1979)

CVE[p](x, t) = ρc2αD

eE

∫ t

0

∂J

∂t
(t− τ)

∂p

∂t
(τ)dτ

where α is the restraint parameter, E is the pipe materials Young’s modulus, e is the pipe

wall thickness, and J is the material compliance curve.

For all cases, wLUF has been taken as the 10-term exponential approximation from

Vı́tkovský et al. (2004), wTUF has been taken as the 13-term approximation from Vardy

and Brown (2007), ∂J/∂t has been taken as the single term Kelvin-Voigt model for mildly

viscoelastic mortar-lined steel pipes (Stephens, 2008), c = 1000 m/s (unless otherwise spec-

ified), f = 0.02 for RTSF, ε/D = 0.001 for RTUF, and e/D = 0.1 for CVE where all pipes are

only restrained at the ends.

4.3. Parameter settings

Within Zecchin (2010), a detailed parametric sensitivity analysis was undertaken apply-

ing (21) to a series of dimensionless single pipeline system. Heuristics were developed for the

parameters a, NH and N∆. However, as the Laplace variable s for the dimensionless system

is nondimensionalised by a factor of the pipeline period Tl = l/c (that is s̃ = Tls where the

tilde denotes properties pertaining to the dimensionless system), a reinterpretation of the

parameters that are directly related to the s domain (a and the nominal harmonic bandwidth

∆Ω upon which N∆ depends) are required for dimensional systems. For single pipe systems,

the reinterpretation is simply a multiplication of the dimensionless values by a factor of

1/Tl. However, for a network (G(N ,Λ),P) containing many pipes, there is no single period

as each pipeline has a different period. Based on trialling a number of different statistics, a

preliminary analysis demonstrated that the most suitable choice for the indicative period of

a network period (denoted by T ∗l ) is

T ∗l = max
λ∈Λ
{Tlλ} , (22)
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which is the period associated with the largest pipeline period within the network. The

reason for this is twofold. Firstly, as a result of the eat term in the integration (21), it is

important to keep a = ã/Tl small hence motivating the use of larger values of T ∗l . The sec-

ond reason is to do with the spacing of the system harmonics throughout C. The harmonic

spacing for nondimensional pipeline is approximately ∆Ω̃ = π/2. However, multi-pipe net-

works do not contain uniformly spaced harmonics, hence the spacing between the harmonics

along an integration contour can be highly irregular. From this perspective, it is necessary

to adopt a nominal harmonic width that is small enough to adequately discretise the har-

monics with the thinnest bandwidth. Such harmonics are those associated with the longest

period, and hence ∆Ω = π/(2T ∗l ) has been taken as the nominal harmonic bandwidth.

To demonstrate the robustness of the method, the parameters were not calibrated to

each case study, but the heuristics were used with ã = 0.07 and N∆ = 41 (as suggested in

Zecchin (2010)), and a range of NH was used (NH ∈ {250, 500, 1000, 2000}) to study the

accuracy versus computational efficiency trade-off.

5. Computational Results and Analysis

Examples of specific case studies are used to highlight important issues relating to the

accuracy (Section 5.1) and computational efficiency (Section 5.2) of the NILT. Following

the examples, general results observed for all case studies are discussed at length.

5.1. Accuracy studies

Five detailed examples are firstly presented and discussed below, where each example is

based on the 51-pipe network whose pipes are comprised of one of the five pipe types1. These

examples are used to explore the issues pertaining to each different pipe type. Following

these examples, a detailed analysis of the results for all four networks is given, where general

conclusions are drawn.

1It is recognised that in the case of the laminar pipe models, the assumption of laminar flow may be
violated. This however is not of concern within this work, as the emphasis is on the ability of the NILT to
approximate the MOC for a range of different models for R. That is, the comparative dynamical behaviour
is of primary interest.

18



5.1.1. Qualitative analysis of different pipeline models for the 51-pipe network

The results for the experiments with the 51-pipe network with the five different pipeline

models is presented within this section. For each case, the network was excited into a

transient state by temporarily halting the demand at nodes {12, 17, 27, 30} for a period

of {1.0, 0.5, 0.3, 0.4} seconds. The pressure responses of the network at node 25 for the

first 100 s, as computed by the MOC on a temporal grid of ∆t = 0.001 s (required for a

Courant number of 1), are given in subfigure (a) for Figures 5-9 respectively for models

LSF, TSF, LUF, TUF and VE. Within these figures, subfigures (b)-(d) show the error

functions for the NILT approximations for different values of NH = 250, 500, 1000, where

ENH
(t) = f̃(t|a,∆ω,NH)− f(t).

From the experiments for the LSF model, a consideration of the E1000(t) error function

shows that an extremely accurate simulation for this pipe type with the NILT is achievable.

Comparing the error functions E1000(t), E500(t), and E250(t) it is observed that there is

an order of magnitude increase in the accuracy when doubling the number of harmonics

included in the NILT from 250 to 500, and that the increase from 500 to 1000 harmonics

yields a near indistinguishable error. The highest error in the NILT occurred in the first

stages of the pressure response, where closer analysis shows that the error was associated

with a Gibbs-type oscillation in the NILT approximation resulting from the sharpness of the

pressure wave. For the larger time scales, the errors remain within reasonably small bounds

(i.e. |E1000(t)| < 1 kPa, |E500(t)| < 3 kPa, and |E250(t)| < 10 kPa).

Similarly with the TSF experiments, the error functions E250(t), E500(t), and E1000(t) in

Figure 6 exhibit their maximum error in the early stages of the pressure response due to

the sharpness of the pressure front at this time. However, a qualitativly different behaviour

of the error functions is observed for the TSF experiments as opposed to that for the LSF

experiments. For the smaller time points the errors appear to follow a trend (as opposed to

being approximately uniformly distributed about the 0 level) and at the larger time points,

the errors do not consist of high frequency oscillations as in for the LSF, but they have a

much lower variability, particularly in the case of the E250(t) function.

These observed differences can be explained by considering the dynamic behaviour of
19
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pressure response at node 25, where the subfigures show: (a) the pressure response f(t) computed by the
MOC; and (b)-(d) the errors ENH
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the pressure response at node 25, where the subfigures show: (a) the pressure response f(t) computed by
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the pipe types. Firstly, the lower magnitude in the high frequency components in the error,

observed in this example, result from the higher energy dissipation of the TSF pipes. This

means that the energy in the higher frequencies did not persist into the longer time-scales, as

was observed for the LSF pipes. Secondly, the bias (or trend) observed in the error was due

to the fact that the NILT is a linear approximation (in the TSF case but not the LSF case).

The nonlinear error associated with the NILT is dependent on the square of the size of the

deviation of the flow from the operating point |q(t) − q0|2. Therefore, when the deviation

was large enough, the linear model yielded a biased approximation of the nonlinear model.

This phenomena is also observed in the TUF experiments.

The comparative behaviour of the error functions is also different for this example as

opposed to the LSF expriments. It is seen that a reduction in the error is achieved by

doubling the number of harmonics used in the NILT from 250 to 500. However, the reduction

in error for E1000(t) in comparison to E500(t) is small. This observation is consistent with the

discussion in the previous paragraph, in that the higher dissipation of this network means

that the higher frequency components do not contribute much to the signal reconstruction in

the NILT, but that the observed error is mainly associated with the nonlinearities. Finally,

the error function E250(t) increases in magnitude for the larger time, resulting from the

truncation error associated with E250(t).

As with the LSF experiments, the accuracy that is achievable with the NILT for linear

pipe types is demonstrated by the extremely low magnitude of the E1000(t) error function

in Figure 7 for the LUF model. As the pipe type for this example is linear, there is no

trend in the error functions as with the TSF model. However, in comparison to the LSF

model, the errors are generally smaller for the larger time scales. This reduction in the error

is attributed to the higher dissipation rate in the LUF pipes as opposed to the LSF pipes,

resulting in a lower contribution to the time-domain behaviour from the higher frequencies.

As the TUF pipe type is nonlinear, the behaviour of the error functions in Figure 8 is

qualitatively similar to that for the TSF, but with even less high frequency components for

the larger time scales resulting from the increased dissipation rate from the unsteady friction

contribution. As with this example, the decrease in the error for increasing the number of
22
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Figure 7: Comparison of MOC and the NILT for the laminar-unsteady-friction (LUF) 51-pipe network for
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harmonics from 500 to 1000 is small as the error arises from the nonlinear dynamics in the

MOC model

As with the LSF and LUF experiments, the ability for the NILT to accurately model

VE pipes is observed by the low magnitude of both the E1000 and E500 error functions in

Figure 9. It is observed that the errors for this pipe type are the lowest of all pipe types.

This is due to the higher dissipation in the VE model. As observed in Zecchin (2010), a

more dissipative model manifests itself as a smoother function in the Laplace-domain that

decays faster for larger |ω|. Such functions are more accurately numerically integrated.

5.1.2. Quantitative analysis of different pipeline models

Accuracy comparisons for 65 case studies (three to four different values of NH for five

network types in five different pipe types) are summarised in Tables 2-5. The results are

presented in terms of the L∞ error of the pressure response between the NILT approximation

and the MOC (defined as ||ENH
(t)||∞), where the error is taken as the maximum over 5 nodes

for the 11-pipe network and 10 nodes for the other networks. To provide a comparative

assessment of the magnitude of the errors relative to the excitation of the system, the L∞

norm of the MOC with respect to the steady-state value2 is also given. The use of this norm

allows for a comparison of the maximum magnitude of the approximations error as a ratio of

the maximum magnitude of transient fluctuations about the steady-state point. The errors

as a percentage of the norms are given in Tables 2-5 in italics.

From Tables 2-5 it is observed that for the highest number of harmonics NH in each

table, the normalised error was less than 4% for most case studies, with some of the case

studies achieving errors of less than 1% for the 11-pipe and 51-pipe networks. This level

of accuracy for the nonlinear case studies is greater than expected, particularly given the

relatively large transient perturbation from the steady-state operating point, as indicated

by the L∞ norm of the MOC excitation magnitude. The errors for the 35-pipe and 94-

pipe networks were consistently greater than the other two networks, and were also more

2That is, given the function f(t) as computed by the MOC, the relative L∞ norm is defined as ||f(t)−fo||∞
where fo is the steady state value of f(t).
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Figure 9: Comparison of MOC and the NILT for the viscoelastic (VE) 51-pipe network for the pressure
response at node 25, where the subfigures show: (a) the pressure response f(t) computed by the MOC; and
(b)-(d) the errors ENH
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Table 2: The L∞ excitation magnitudes for the MOC and the L∞ errors for the NILT methods, for varying
NH applied to the 11-pipe case studies for the different pipe types. The NILT errors, presented as a
percentage of the MOC norms, are given in italics.

Methoda
L∞ normsb and errorsc for pipe types (kPa)

LSF TSF LUF TUF VE

MOC 665.91 395.66 429.47 355.16 379.65

1000
1.07 3.93 1.07 2.99 1.07

(0.2%) (1%) (0.3%) (0.8%) (0.3%)

500
6.15 6.93 6.14 6.95 6.11

(0.9%) (1.8%) (1.4%) (2%) (1.6%)

250
39.94 40.47 39.95 40.45 39.95
(6%) (10.2%) (9.3%) (11.4%) (10.5%)

a The numbers refer to the NILT simulations where the number specified corresponds to the number of
harmonics NH . b The norm magnitudes for the MOC are taken relative to the steady state value. c The
L∞ errors are based on the maximum of the norms from 5 nodes (i.e. {2, 3, 4, 5, 6}).

Table 3: The L∞ excitation magnitudes for the MOC and the L∞ errors for the NILT methods, for varying
NH applied to the 35-pipe case studies for the different pipe types. The NILT errors, presented as a
percentage of the MOC norms, are given in italics

Methoda
L∞ normsb and errorsc for pipe types (kPa)

LSF TSF LUF TUF VE

MOC 628.22 508.69 589.28 508.55 507.00

1000
15.06 16.04 14.92 13.98 13.87

(2.4%) (3.2%) (2.5%) (2.7%) (2.7%)

500
71.84 71.82 71.84 71.80 71.88

(11.4%) (14.1%) (12.2%) (14.1%) (14.2%)

250
134.65 134.81 134.65 134.74 134.00

(21.4%) (26.5%) (22.8%) (26.5%) (26.4%)

a The numbers refer to the NILT simulations where the number specified corresponds to the number of
harmonics NH . b The norm magnitudes for the MOC are taken relative to the steady state value. c The
L∞ errors are based on the maximum of the norms from 10 nodes (i.e. {3, 5, 7, 8, 10, 11, 12, 13, 15, 19}).

sensitive to reductions in NH , as the errors increased markedly more for the reduction from

NH = 1000 to NH = 250. Values of NH = 500 are adequate for high accuracy for the 11-pipe
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Table 4: The L∞ excitation magnitudes for the MOC and the L∞ errors for the NILT methods, for varying
NH applied to the 51-pipe case studies for the different pipe types. The NILT errors, presented as a
percentage of the MOC norms, are given in italics.

Methoda
L∞ normsb and errorsc for pipe types (kPa)

LSF TSF LUF TUF VE

MOC 1208.89 948.20 1071.98 986.33 1062.28

1000
0.81 33.60 0.80 16.47 0.77

(0.1%) (3.5%) (0.1%) (1.7%) (0.1%)

500
6.81 34.51 6.75 17.36 6.56

(0.6%) (3.6%) (0.6%) (1.8%) (0.6%)

250
56.23 60.51 55.71 54.23 54.05

(4.7%) (6.4%) (5.2%) (5.5%) (5.1%)

a The numbers refer to the NILT simulations where the number specified corresponds to the number of
harmonics NH . b The norm magnitude values for the MOC are taken relative to the steady state value. c

The L∞ errors are based on the maximum of the norms from 10 nodes (i.e. {3, 6, 8, 10, 15, 19, 22, 25, 28, 32}).

Table 5: The L∞ excitation magnitudes for the MOC and the L∞ errors for the NILT methods, for varying
NH applied to the 94-pipe case studies for the different pipe types. The NILT errors, presented as a
percentage of the MOC norms, are given in italics.

Methoda
L∞ magnitudesb and errorsc for pipe types (kPa)

LSF TSF LUF TUF VE

MOC 1363.40 937.44 1094.56 1642.57 1072.90

2000
50.32 69.48 44.50 53.72 40.89

(3.7%) (7.4%) (4.1%) (3.3%) (3.8%)

1000
154.22 142.48 137.86 71.96 126.70

(11.3%) (15.2%) (12.6%) (4.4%) (11.8%)

500
236.14 204.71 206.94 126.22 189.58

(17.3%) (21.8%) (18.9%) (7.7%) (17.7%)

250
293.31 245.51 260.39 182.94 240.13

(21.5%) (26.2%) (23.8%) (11.1%) (22.4%)

a The numbers refer to the NILT simulations where the number specified corresponds to the number of
harmonics NH . b The norm magnitude for the MOC are taken relative to the steady state value. c The L∞
errors are based on the maximum of the norms from 10 nodes (i.e. {9, 16, 36, 39, 48, 56, 57, 62, 69, 71}).
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and 51-pipe networks, but NH = 1000 was needed for high accuracy in the 35-pipe network,

and NH = 2000 for high accuracy in the 94-pipe network.

With respect to the pipe types, as observed in the examples, the greatest errors occurred

for the cases of the nonlinear TSF and TUF types. The TUF approximation was generally

more accurate than the TSF. This observation is explained by the fact that the unsteady

friction operator in the TUF model is in fact linear (Vardy and Brown, 2007), therefore, in

comparison to the TSF model, a proportionally greater degree of the dissipation behaviour

for the TUF is linear in nature.

As observed in the examples, the LSF generally yielded the highest error for the linear

pipe types, in an absolute sense, but in a relative sense the errors as a percentage of the

MOC norm were similar to those for the LUF and the VE, as the MOC norm for the LSF

cases was typically higher than these other pipe types. The VE cases typically yielded the

lowest error, once again being attributed to the higher energy dissipation rate of these pipe

types (as is observed by the relatively smoother pressure response in Figure 9).

5.2. Computational efficiency studies

One of the advantages of the NILT as an efficient hydraulic simulator is that it does not

require the computation of the complete network state as it deals only with the composition

of transfer functions from the input boundary conditions to the output nodal response

variables. This is in contrast to all discrete methods, such as the MOC, that require a

discretisation of the state and the computation of all lumped state variables at each time

step. Despite its efficiency, an implication of these different approaches, however, is that the

computational time of the NILT is dependent on the number of measurement points3 Nm

within the network, whereas the computational time of discrete methods, like the MOC, is

not.

To explain this further, with respect to (18), the computation of ψi(t) (Nm = 1), the

3That is, spatial points at which the transient response is to be computed.
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pressure response at node i ∈ Nd, is efficiently calculated by

ψi(t) = L−1 {Ψi(s)} (t) = L−1

H i(s)

 Θd(s)

Ψr(s)

 (t), (23)

where H i is the i-th row of the system matrix H . That is, (23) involves only a vector

multiplication (at each s) and the ILT of only a single Laplace-domain function Ψi(s). This

can be performed without evaluating any of the other response nodal states in ψd(t) or θr(t).

Similarly, to calculate the pressure response at any two nodes ψi(t) and ψj(t) (Nm = 2), the

most efficient approach isψi(t)
ψj(t)

 = L−1


Ψi(s)

Ψj(s)

 (t) = L−1


 H i(s)

Hj(s)

 Θd(s)

Ψr(s)

 (t), (24)

which requires approximately twice4 the number of operations of (23) (two vector multi-

plications, and the ILT of two functions). Given this dependency on the number of state

variable points of interest, it is important to include this as a parameter in the numerical

computational studies.

As with Section 5.1, firstly a couple of specific examples are given, followed by a general

analysis of the computational timings for all case studies from Section 5.1. Simulations

were performed on a 2.13 GHz Linux machine and the CPU timings were evaluated by the

procstat routine to ensure that the exact processing time of the simulation in the CPU was

recorded.

5.2.1. Qualitative analysis for different pipeline models

For the qualitative analysis, results from experiments on the 51-pipe network with both

the TSF and TUF pipeline models is given. The experiments consisted of 105 time point

computations (i.e. 100 s simulation time at a temporal discretisation of ∆t = 0.001 s),

where the computational times for these experiments for the MOC and the NILT are given

4The computational requirements are only approximately double, as there is some computational saving
in computing the NILT for two functions at a time (as opposed to two functions independently).

30



Simulation time (s)

(a) (b) (c)

(d) (e) (f)

C
om

pu
ta

ti
on

al
T

im
e

(C
P

U
se

co
nd

s)

50 10050 1000 50 100

200

400

600

100

102

Figure 10: Computational times versus simulation time for the TSF 51-pipe network for the MOC (−) and
the NILT (− · −). The three lines for the NILT correspond to NH=250 (lowest), NH=500 (middle), and
NH=1000 (highest). Figures (a)-(c) show the computational time on log scale for the case of the pressure
response being computed at 1, 2, and 10 nodes, respectively. Figures (d)-(f) repeat these plots on a linear
scale. Computational times are in CPU seconds. Simulations were performed on a 2.13 GHz Linux machine.

in Figures 10 and 11 for Nm = 1, 2, and 10.

Considering the computational requirements for a given number of nodal calculations in

Figure 10, qualitatively, the computational time of the MOC and the NILT demonstrate

an interesting behaviour. The MOC required minimal startup time, where the initialisation

procedures simply involve setting the state variables to the initial steady-state values5. The

increase in computational time for the MOC is linear with the simulation time t. The NILT

however has a more computationally expensive overhead in the initialisation procedures, as

observed more clearly in the Figure 10(a)-(c) log scale plots. This is attributed to the fact

that before any time-points can be computed, the complex coefficients F (a + in∆ω), n =

5The computation of the initial steady-state hydraulic solver is not included in these comparative timing
studies as it is was the same for both the MOC and the NILT.
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0, 1, . . . , N∆ ·NH must be determined by (18), which for this example involved the inversion

of a complex 32× 32 matrix. Therefore, as observed in Figure 10, the initial computational

overhead is greater as NH is increased. Similarly to the MOC, the computational time for

the NILT increased linearly with t. As is clear on the Figure 10(d)-(f) linear plots, the

startup time for the NILT is only a small portion of the overall computational time.

Doubling the number of measurement nodes from 1 to 2 [Figures 10(a) and 10(d) com-

pared to Figures 10(b) and 10(e)] appears to have small impact on the increase in computa-

tional time (particularly for the smaller NH). For these cases, the NILT is more computa-

tionally efficient for larger t. However, as the number of measurement nodes is increased to

10, the computational requirements of the NILT for all NH are dramatically increased, such

that, as seen in 10(e), the MOC is more efficient than the NILT with NH = 1000 for all t.

The behaviour of the computational time as a function of the simulation time t for

the TUF from Figure 11 is qualitatively similar to that for the TSF in Figure 10, with

the significant quantitative difference being the computational times for the MOC. As a

time-domain operator, the TUF in the MOC involves the evaluation of a convolution to

model the unsteady component to the fluid shear stresses at every spatial point. Under the

efficient Vardy and Brown (2007) algorithm, this convolution is transformed into a single

step difference equation in a finite number of states. Therefore, in comparison to the TSF,

the TUF involves the storage of these additional states and the calculation of the difference

equation at each time point for each spatial point. The computational impact of this is

observed to be a near quadrupling of the computational cost of the TUF in comparison with

the TSF.

In contrast, the Laplace-domain representation of the TUF does not require any ad-

ditional states, but the Vardy and Brown (2007) algorithm serves to introduce a rational

function6 into the resistance transfer function. Therefore, in comparison with the TSF, the

computational difference in the NILT method occurs only in the initialisation time, that is,

only when the H(s) matrix in (18) is computed. From Figure 11, it is clear that this cost is

6The introduced rational function is of the order of the number of introduced states.
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Figure 11: Computational times versus simulation time for the 51-pipe network with TUF pipes for the
MOC(−) and the NILT (−·−). The three lines for the NILT correspond to NH=250 (lowest), 500 (middle),
and 1000 (highest). Figures (a)-(c) show the computational time on log scale for the case of the pressure
response being computed at 1, 2, and 10 nodes, respectively. Figures (d)-(f) repeat these plots on a linear
scale. Computational times are in CPU seconds. Simulations were performed on a 2.13 GHz Linux machine.

small. Consequently, once the complex coefficients F (a+ in∆ω), n = 0, 1, . . . , N∆ ·NH have

been computed, the computational cost of the NILT at each time point for the TUF is the

same as for the TSF. This results in the NILT being more computationally efficient than

the MOC for all cases as depicted in Figure 11.

5.2.2. Quantitative analysis for different pipeline models

To generalise the study, numerical timing experiments were performed on the four dif-

ferent networks from Section 5.1 in the five different pipe types, creating a total of 20

different network types. For the NILT, the timing experiments were performed for the num-

ber of harmonics NH ∈ {250, 500, 1000} for the 11-pipe, 35-pipe and 51-pipe network and

NH ∈ {250, 500, 1000, 2000} for the 94-pipe network, with the number of computational
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Table 6: Computational timesa of the NILT relative to the MOC for the 11-pipe case study. The compu-
tational times for the MOC simulations (in CPU seconds) are given in italics. All times are based on the
computation of 105 simulation time points.

NH Nms
Relative computational times for pipe type

LSF TSF LUF TUF VE

1000
5 2.770b 2.793 0.938 0.700 1.354
2 1.514 1.535 0.513 0.381 0.746
1 1.105 1.094 0.370 0.278 0.529

500
5 1.398 1.392 0.465 0.350 0.664
2 0.767 0.751 0.256 0.190 0.368
1 0.549 0.549 0.183 0.140 0.269

250
5 0.690 0.700 0.232 0.175 0.338
2 0.385 0.378 0.129 0.096 0.187
1 0.279 0.272 0.092 0.069 0.134

(MOC 74.1 75 223.5 297.4 154.9)

aSimulations were performed on a 2.13 GHz Linux machine were the CPU timings were evaluated by the
procstat routine. b This means that the NILT took 2.770 times the computational time for the MOC, which
in this case is 2.77× 74.1 = 205.3 CPU seconds.

measurement points Nm ∈ {1, 2, 5} for the 11-pipe network and Nm ∈ {1, 2, 5, 10} for the

other three networks. Consequently, the study comprised 20 MOC simulations, and 245

NILT simulations, each for 105 time points.

Tables 6-9 summarise the numerical experiments for the computational timing studies.

Presented in italics are the computational times (CPU seconds) of the MOC for the different

network types and, for convenience, the computational times of the NILT are presented as

a ratio with the corresponding MOC time (i.e. relative computational times greater than 1

indicate that the MOC was more efficient than the NILT for the particular case).

At a first observation, Tables 6-9 show the expected result that the computational time

of the NILT are approximately proportional to the number of harmonics NH involved in

the inversion process (i.e. a doubling of NH is matched by a doubling of the computational

time). In comparison, the computational cost of the NILT is not linear with the number

of measurement nodes Nm, but the incorporation of each additional node for Nm > 1 costs
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Table 7: Computational timesa of the NILT relative to the MOC for the 35-pipe case study. The compu-
tational times for the MOC simulations (in CPU seconds) are given in italics. All times are based on the
computation of 105 simulation time points.

NH Nms
Relative computational times for pipe type

LSF TSF LUF TUF VE

1000

10 0.775 1.132 0.347 0.206 0.415
5 0.539 0.587 0.122 0.144 0.242
2 0.262 0.310 0.068 0.076 0.134
1 0.192 0.209 0.074 0.049 0.099

500

10 0.522 0.404 0.116 0.123 0.286
5 0.337 0.230 0.073 0.065 0.161
2 0.181 0.127 0.041 0.027 0.083
1 0.129 0.092 0.030 0.020 0.070

250

10 0.141 0.141 0.045 0.032 0.073
5 0.155 0.081 0.026 0.019 0.042
2 0.077 0.045 0.014 0.010 0.024
1 0.066 0.033 0.011 0.008 0.018

(MOC 649.7 655.4 2106.7 2916.8 1280.7)

aSimulations were performed on a 2.13 GHz Linux machine were the CPU timings were evaluated by the
procstat routine.

approximately an additional 1/3 of the computational time required for the first node (i.e.

at each time point, there are operations that need to be performed only once for all nodes).

As is clear in Tables 7-9, the NILT compares more favorably with the MOC for the

larger networks, with relative computational times reaching as low as 0.008 (i.e. two orders

of magnitude less time then the MOC). This is attributed to the fact that the MOC has an

increasing computational expense for larger networks. In contrast, the only computational

overhead associated with large networks for the NILT is in the initialisation phase, which,

from the qualitative analysis, was observed to only contribute minimally to the overall

computational time. The MOC was only faster than the NILT for the cases of the numerically

simple LSF and TSF, and this was only observed for the longer NILT simulations (i.e. higher

NH and Nm).

With regard to the more numerically involved LUF, TUF and VE pipe types, the NILT
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Table 8: Computational timesa of the NILT relative to the MOC for the 51-pipe case study. The compu-
tational times for the MOC simulations (in CPU seconds) are given in italics. All times are based on the
computation of 105 simulation time points.

NH Nms
Relative computational times for pipe type

LSF TSF LUF TUF VE

1000

10 1.614 1.430 0.545 0.419 0.890
5 0.753 0.613 0.260 0.238 0.524
2 0.428 0.354 0.160 0.103 0.263
1 0.327 0.334 0.100 0.068 0.177

500

10 0.638 0.562 0.203 0.203 0.313
5 0.374 0.329 0.120 0.121 0.186
2 0.216 0.189 0.069 0.059 0.110
1 0.162 0.141 0.053 0.040 0.109

250

10 0.296 0.260 0.138 0.071 0.140
5 0.174 0.152 0.073 0.060 0.083
2 0.101 0.088 0.033 0.032 0.049
1 0.076 0.066 0.025 0.025 0.038

(MOC 456.7 523.2 1458.5 1911.9 874.7)

aSimulations were performed on a 2.13 GHz Linux machine were the CPU timings were evaluated by the
procstat routine.

was unconditionally more efficient (except for the 11-pipe {NH , Nms} = {1000, 5} case). The

more expensive MOC times for these cases are clearly attributed to the increased number of

numerical operations involved in evaluating the convolutions for the unsteady friction and

viscoelastic operators. Using the NH values from Tables 2-5, a NILT simulation with a small

error7 for 5 nodes was observed to be on average 50%, 17%, 14% and 40% of the MOC time

for the 11-pipe, 35-pipe, 51-pipe and 94-pipe networks, respectively. As the LUF and the

TUF pipe types were more numerically involved than the VE pipe type for the MOC, the

computational saving of the NILT is greater for these cases.

7Here small error is taken to mean: less that 1% for the 11-pipe network (i.e. the case NH = 500); less
that 3% for the 35-pipe network (i.e. the case NH = 1000); less that 2% for the 51-pipe network (i.e. the
case NH = 500); and less than 4.1% for the 94-pipe network (i.e. the case NH = 2000)
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Table 9: Computational timesa of the NILT relative to the MOC for the 94-pipe case study. The compu-
tational times for the MOC simulations (in CPU seconds) are given in italics. All times are based on the
computation of 105 simulation time points.

NH Nms
Relative computational times for pipe type

LSF TSF LUF TUF VE

2000

10 1.826 2.047 0.527 0.389 0.828
5 1.201 1.266 0.338 0.256 0.596
2 0.739 0.803 0.236 0.169 0.429
1 0.630 0.695 0.193 0.141 0.291

1000

10 0.938 1.059 0.369 0.271 0.521
5 0.560 0.601 0.212 0.165 0.357
2 0.363 0.422 0.144 0.106 0.237
1 0.301 0.337 0.120 0.089 0.198

500

10 0.422 0.479 0.158 0.133 0.244
5 0.304 0.299 0.101 0.074 0.178
2 0.192 0.199 0.070 0.050 0.113
1 0.129 0.164 0.058 0.042 0.092

250

10 0.203 0.216 0.088 0.066 0.139
5 0.131 0.143 0.053 0.040 0.085
2 0.085 0.093 0.035 0.026 0.056
1 0.070 0.078 0.029 0.021 0.045

(MOC 3235.0 2865.4 8313.0 11335.0 5385.1)

aSimulations were performed on a 2.13 GHz Linux machine were the CPU timings were evaluated by the
procstat routine.

6. Conclusions

The focus of this paper has been on the use of the linear Laplace-domain network model

from Zecchin et al. (2009a) as an alternative time-domain hydraulic simulator by way of the

numerical inverse Laplace transform (NILT). The use of the inverse Laplace transform (ILT)

in the development of time-domain models from their Laplace transforms (LTs) has been

extensive, however little attention has been given to full network models, with the exception

being the impulse response method (IPREM) (Suo and Wylie, 1989). The approach pre-

sented here is entirely novel in that it couples the Laplace-domain input/output model from
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(Zecchin et al., 2009a) in a computationally efficient way with the Fourier series expansion

NILT from Abate and Whitt (1995). The parameters of the NILT have been studied in

detail in (Zecchin, 2010). These heuristics were successfully used in the application of the

NILT to 20 different case studies in this paper (four different networks in five different pipe

types). The focus of the studies were on the accuracy and computational efficiency of the

proposed NILT.

For the cases considered, the NILT was found to provide accurate approximations for

all case studies, even networks with nonlinear pipe types. The accuracy was observed to be

greater for the more highly dissipative networks. For large networks, NILT was found to be

computationally efficient compared with the method of characteristics (MOC). This relative

efficiency was observed to be especially true for the case studies with more complex pipe types

involving convolution operations, as these operations exert little additional computational

time on the NILT. In addition to the computational efficiency, the NILT possesses the

desirable property that it correctly captures wave propagation delays without the need for

fine computational grids. This property arises from the fact that the NILT does not involve

the discretisation of the network state, and it is able to compute the network state at any

time point without computing the state at the preceding time points. As such, the NILT

represents a worthy alternative approach for modelling networks involving pipes with greatly

varying wavespeeds.
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8. Acronyms

I/O input/output

ILT inverse Laplace transform

IPREM impulse response method

LSF laminar-steady-friction

LT Laplace transform

LUF laminar-unsteady-friction

MOC method of characteristics

NILT numerical inverse Laplace transform

PDE partial differential equation

TSF turbulent-steady-friction

TUF turbulent-unsteady-friction

VE viscoelastic
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