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Abstract. This work presents an optimization technique based on
Simulated Annealing (SA) to solve the Water Distribution Network
Design problem, considering multi-period restrictions with time varying
demand patterns. The design optimization of this kind of networks is an
important issue in modern cities, since a safe, adequate, and accessible
supply of potable water is one of the basic necessities of any human being.
Given the complexity of this problem, the SA is improved with a local
search procedure, yielding a hybrid SA, in order to obtain good quality
networks designs. Additionally, four variants of this algorithm based on
different cooling schemes are introduced and analyzed. A broad experi-
mentation using different benchmark networks is carried out to test our
proposals. Moreover, a comparison with an approach from the literature
reveals the goodness to solve this network design problem.

Keywords: Water Distribution Network Design · Optimization ·
Metaheuristic · Simulated Annealing

1 Introduction

A water distribution network consists of thousands of nodes with nonlinear
hydraulic behaviour, linked by thousands of interconnecting links. The inherent
problem associated with cost optimisation in the design of water distribution net-
works is due to the nonlinear relationship between flow and head loss and the dis-
crete nature of pipe sizes. As a consequence, the solution concerning the layout,
design, and operation of the network of pipes should result from good planning and
management procedures. In this way, this problem known as Water Distribution
Network Design (WDND) requires to manage an important number of variables
(pipes, pipe diameters, demand nodes, water pressure, reservoirs, etc.), and con-
straints (water velocity, pressure, etc.). This problem, even for simple networks,
is very difficult to solve, in particular it is classified as NP-hard [1].

Early research works in the WDND optimization area were focused on
the single-period, single-objective, gravity-fed design optimization problem.
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The first research works applied linear programming [2,3], and non-linear pro-
gramming [4,5]. After that, the metaheuristics have been used to solve these
problems, such as the trajectory-based ones: Simulated Annealing [6,7] and Tabu
Search [8]. Also population-based metaheuristics were applied, for example, Ant
Colony Optimization [9], Ant Systems [10], Genetic Algorithms [11–13] Scatter
Search [14], and Differential Evolution [15].

Recently, the single-period problem was extended to a multi-period setting in
which time varying demand patterns occur. Farmani et al. [16] formulated the
design problem as a multi-objective optimization problem and apply a multi-
objective evolutionary algorithm. In [12], a Genetic Algorithm was used to solve
six small instances considering velocity constraint on the water flowing through
the distribution pipes. This constraint was also taken into account in [17], but the
authors used mathematical programming on bigger, closer-to-reality instances. A
Differential Evolution (DE) algorithm was proposed in [18] to minimize the cost
of the water distribution network. Another version of a DE algorithm to solve this
problem was presented in [19]. An Iterative Local Search [20] was specifically-
designed in order to consider that every demand node has 24 hrs water demand
pattern and a new constraint, which imposes a limit on the maximal velocity of
water through the pipes.

Based on the problem formulation given by De Corte and Sörensen [20],
we propose an optimization technique, based on Simulated Annealing (SA), in
order to improve and optimize the distribution network design. Thus, this SA
is designed to obtain the optimal type of pipe connecting the supply, demand,
and junction nodes in the distribution network. This proposal incorporates a
local search procedure in order to improve the layout of the network, arising
the Hybrid Simulated Annealing (HSA). The HSA’s performance is compared
with algorithms present in the literature. This work constitutes an extension of
a previous work [21] and includes new content regarding an study and analysis
of the main control parameter of the HSA, known as temperature. Moreover,
we introduce and statistically compare four HSA’s variants, taking into account
different schemes to schedule the cooling process. We test the performance of
our proposals with a set of networks with different sizes expressed by number
of pipes and characteristics. The evaluation considers relevant aspects such as
efficiency and internal behavior.

The rest of this article is organized as follows. In Sect. 2, we introduce the
problem definition. Section 3 explains our algorithmic proposal, HSA, to solve the
WDND optimization problem and the four HSA’s variants. Section 4 describes
the experimental analysis and the methodology used. Then, we analyze the
results obtained by the variants and compare with the obtained by the ILS [20]
in Sects. 5 and 6, respectively. Finally, we present our principal conclusions and
future research lines.

2 Multi-Period Water Distribution Network Design

The objective of the WDND problem is to minimize the total investment cost
(TIC) in a water distribution network design. The problem can be characterized
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as: simple-objective, multi-period, and gravity-fed. Two restrictions are consid-
ered: the limit of water speed in each pipe and the demand pattern that varies
in time. The network can be modeled by a connected graph, which is described
by a set of nodes N = {n1, n2, ...}, a set of pipes P = {p1, p2, ...}, a set of loops
L = {l1, l2, ...}, and a set of commercially available pipe types T = {t1, t2, ...} .
The TIC is obtained by the formula shown in Eq. 1,

min TIC =
∑

p∈P

∑

t∈T

LpICtxp,t (1)

where ICt is the cost of a pipe p of type t, Lp is the length of the tube, and xp,t

is the binary decision variable that determines whether the tube p is of type t
or not. The objective function is limited by: physical laws of mass and energy
conservation, minimum pressure demand in the nodes, and the maximum speed
in the pipes, for each time τ ∈ T . These laws are explained in the following
paragraphs.

Mass Conservation Law: It must be satisfied for each node N in each period
of time τ . This law establishes that the volume of water flowing towards a node
in a unit of time must be equal to the flow that leaves it (see Eq. 2),

∑

n1∈N/n

Q(n1,n),τ −
∑

n2∈N/n

Q(n,n2),τ = WDn,τ − WSn,τ ∀n ∈ N ∀τ ∈ T (2)

where Q(n1,n),τ is the flow from node n1 to node n at time τ , WSn,τ is the
external water supplied and WDn,τ is the external water demanded.

Energy Conservation Law: It states that the sum of pressure drops in a closed
circuit in an instant of time τ is zero. These drops can be approximated using
the Hazen-Williams equations with the parameters used in EPANET 2.0 [22]
(the hydraulic solver used in this paper), as indicated in Eq. 3.

∑

p∈l

[
10.6668yp,τQ1.852

p,τ Lp∑
t∈T (xp,tC1.852

t D4.871
t

]
= 0 ∀l ∈ L ∀τ ∈ T (3)

In Eq. 3, yp,τ is the sign of Qp,τ that indicates changes in the water flow direc-
tion relative to the defined flow directions, Qp,τ is the amount of water flowing
through pipe p in time τ , Lp is the pipe length, Ct is the Hazen-Williams rough-
ness coefficient of pipe type t, and Dt is the diameter of pipe type t.

Minimum Pressure Head Requirements: for each node n in each period of
time τ , it must be satisfied (see Eq. 4),

Hmin
n,τ ≤ Hn,τ ∀n ∈ N ∀τ ∈ T (4)

being Hmin the minimum node pressure and Hn,τ the node’s current pressure.

Maximum Water Velocity: The water velocity vp,τ can not exceed the max-
imum stipulated speed vmax

p,τ . Equation 5 shows this relationship.

vp,τ ≤ vmax
p,τ ∀p ∈ P ∀τ ∈ T (5)
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Table 1. Different solutions or network designs in vector representation.

Solution Pipe ID 1 2 3 4 5 6 7 8 Feasibility

Length (m) 31 20 35 37 24 50 12 65 TIC

1 Diam. (mm) 150 150 80 80 100 60 60 80 Feasible

Cost 1550 1000 1225 1295 912 1100 264 2275 9621

2 Diam. (mm) 150 150 80 60 100 60 60 80 Infeasible

Cost 1550 1000 1225 814 912 1100 264 2275 9140

3 Our Proposal for the Multi-Period WDND Problem

Simulated Annealing (SA) [23], a simple trajectory-based metaheuristic, is based
on the principles of statistical thermodynamics, whereby the annealing process
requires heating and then slowly cooling the physical material until it solidi-
fies into a perfect crystalline structure. The SA algorithm simulates the energy
changes in a system subjected to a cooling process until it converges to an equi-
librium state (steady frozen state), where the physical material states correspond
to problem solutions, the energy of a state to cost of a solution, and the tem-
perature to a control parameter.

At the beginning (with a high temperature), SA accepts solutions with high
cost values under a certain probability in order to explore the search space
and to escape from local optima. During the annealing process this probability
decreases according to temperature cooling; intensifying the search and reducing
the exploration in order to exploit a restricted area of a search space.

Simulated annealing evolves by a sequence of transitions between states and
these transitions are generated by transition probabilities. Consequently, SA
can be mathematically modeled by Markov chains, where a sequence of chains is
generated by a transition probability, which is calculated involving the current
temperature.

The proposal consists in adapting and hybridizing the SA algorithm to
solve the Multi-Period WDND optimization problem, arising Hybrid Simulated
Annealing (HSA) algorithm. A solution to this problem is a network, as shown
in Fig. 1(a) and (b). A network or a solution is represented by a vector, where
each element is the diameter selected for that pipe, as can be seen in Table 1.
In this table the vectors that represent the candidate solutions in Fig. 1(a) and
(b) are shown. The total investment cost for each solution is calculated by the
Eq. 1, using the input data from tables (c) and (d) of Fig. 1. The first solution
is hydraulically feasible (satisfying all constraints mentioned in Sect. 2) and the
second one is infeasible (violating the minimum pressure constraint in node 7).

In Algorithm 1, we show a pseudo-code of the HSA algorithm to solve the
WDND optimization problem. HSA uses the EPANET 2.0 toolkit [22] to solve
the hydraulic equations, since this hydraulic solver is applied in most existing
works. HSA generates a feasible initial solution S0 applying both HighCost and
Lowcost mechanisms proposed in [20] (line 2). After the evaluation of the initial
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(a) (b)

Pipe ID Length (m)

1 31
2 20
3 35
4 37
5 24
6 50
7 12
8 65

(c)

Diam. Roughness
Cost(mm) unitless

60 130 22
80 130 35
100 130 38
150 130 50
200 130 61

(d)

Fig. 1. Different solutions or network designs. (a) Solution 1; (b) solution 2; (c) pipe
lengths; (d) available pipe types with their corresponding costs.

Algorithm 1. HSA Algorithm to solve the WDND optimization Problem
1: k = 0;
2: initialize T and S0; {temperature and initial solution}
3: evaluate S0 in TIC0;
4: repeat
5: repeat
6: k = k + 1;
7: generate S1 from S0 applying the MP-GRASP Local Search;
8: evaluate S1 in TIC1;
9: if TIC1 < TIC0 then
10: S0 = S1; TIC0 = TIC1
11: end if
12: generate S2 from S0 applying the perturbation operator;
13: evaluate S2 in TIC2;
14: if (TIC2 < TIC0) or (exp((TIC2 − TIC0)/T ) > random(0, 1)) then
15: S0 = S2; TIC0 = TIC2
16: end if
17: until (k mod MCL) == 0
18: update T ;
19: until stop criterion is met
20: return S0;
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solution (line 3), an iterative process starts (lines 4 to 19). As a first step in the
iteration, the hybridization is carried out in order to intensify the search into the
current region of the solution space. In this way a feasible solution, S1, is obtained
by applying the MP-GRASP local search [20] to S0 (line 7), and then a greedy
selection mechanism is performed (lines 9–11). As a consequence, S0 can be
replaced by S1 if this is better than S0. In the next step a perturbation operator
is used to obtain a feasible neighbor, S2, from S0 (line 12), in order to explore
another areas of the search space. This perturbation randomly changes some
pipe diameters. If S2 is worse than S0, S2 can be accepted under the Boltzmann
probability (line 14, second condition). In this way, at high temperatures (T ) the
exploration of the search space is strengthened. In contrast, at low temperatures
the algorithm only exploits a promising region of the solution space, intensifying
the search. In order to update T , a cooling schedule [23] is used (line 18) and
it is applied after a certain number of iterations (k) given by the Markov Chain
Length (MCL) (line 17). Finally, SA ends the search when the total evaluation
number is reached or the T �= 0.

Most features in SA, such as search space, perturbation operator, and cost
(evaluation) function, are fixed by the problem definition. The only feature that
is variable during the process is the temperature. Therefore one of the most
important features in simulated annealing is the choice of the annealing schedule,
and many attempts have been made to derive or suggest good schedules [24].
In this work, we study the behavior of the most known cooling process in the
literature to solve the Multi-Period WDND optimization problem, arising three
new HSA variants as explained in the following.

– HSAP rop applies the proportional cooling scheme, also called geo-
metric schedule [23], in order to reduce the temperature, as the Eq. 6 shows:

Tk+1 = α ∗ Tk (6)

where α is a constant close to, but smaller than, 1. Particularly, we calculate
α as follows:

α =
k

k + 1
(7)

This scheme is the most popular cooling function because, the temperature
decay is not too slow neither too fast allowing to achieve an equilibrium
between exploitation and exploration.

– HSAExp uses the exponential cooling scheme [23] to produce the tem-
perature decay. The Eq. 8 describes these process, where the constant αk < 1
is calculated in the Eq. 9. This schedule quickly cools the temperature reduc-
ing the required time and iterations to converge to a good solution. In big and
complex problems, this becomes in a disadvantage, given that the equilibrium
between the exploitation and exploration is broken.

Tk+1 = Tk ∗ αk (8)

αk =
ek

e1+k
(9)
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Table 2. Information on the HydroGen networks.

Network Meshedness

coefficient

Pipes Demand

nodes

Water

reservoirs

Network Meshedness

coefficient

Pipes Demand

nodes

Water

reservoirs

HG-MP-1 0.2 100 73 1 HG-MP-9 0.1 295 247 2

HG-MP-2 0.15 100 78 1 HG-MP-10 0.2 397 285 2

HG-MP-3 0.1 99 83 1 HG-MP-11 0.15 399 308 2

HG-MP-4 0.2 198 143 1 HG-MP-12 0.1 395 330 3

HG-MP-5 0.15 200 155 1 HG-MP-13 0.2 498 357 2

HG-MP-6 0.1 198 166 1 HG-MP-14 0.15 499 385 3

HG-MP-7 0.2 299 215 2 HG-MP-15 0.1 495 413 3

HG-MP-8 0.15 300 232 2

– HSALog employs the logarithmic cooling scheme [25], which modifies
the temperature, as shown in Eq. 10. In this Equation, the chain converges to
a global and minimal energy value, where the constant C is computed as the
Eq. 11 shows. This schedule is too slow to be applied in practice but has the
property of the convergence proof to a global optimum [26].

Tk+1 = C ∗ Tk (10)

C =
ln(k)

ln(1 + k)
(11)

Furthermore, we propose a fourth HSA variant, named HSARand . This new
variant combines the three previous explained cooling schemes in only one sched-
ule process. In each iteration, HSARand randomly selects one of these schemes
in order to reduce the temperature. In this way, we try to enhance the HSA by
aggregating the advantages of these three schemes and mitigating their disad-
vantages.

4 Experimental Design

In this section, we introduce the experimental design used in this approach,
the execution environment, and the result analysis. In order to evaluate HSA,
the HydroGen instances of WDND optimization problem [27] are solved. These
instances, HG-MP-i, arise from 15 different distribution networks (see Table 2).
A set of 16 different pipe types is used and their characteristics and costs can be
found in Table 3. The demand nodes are divided into five categories (domestic,
industrial, energy, public services, and commercial demand nodes), each one
with a corresponding base load and demand pattern1. In this way, five different
instances are considered for each HG-MP-i network, totalling 75 instances.

The computational environment used in this work to carry out the exper-
imentation consists of computers with INTEL I7 3770 K quad-core proces-
sors 3.5 GHz, 8 GB RAM, and the Slackware Linux with 3.2.29 kernel version.

1 The base loads can be found in the EPANET input files of the instances.
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Table 3. Available pipe types and their corresponding costs.

Number Diam. (mm) Roughness Cost Number Diameter Roughness Cost

1 20 130 15 9 200 130 116

2 30 130 20 10 250 130 150

3 40 130 25 11 300 130 201

4 50 130 30 12 350 130 246

5 60 130 35 13 400 130 290

6 80 130 38 14 500 130 351

7 100 130 50 15 600 130 528

8 150 130 61 16 1,000 130 628

Because of the stochastic nature of the algorithms, we performed 30 indepen-
dent runs of each instance to gather meaningful experimental data and apply
statistical confidence metrics to validate our results and conclusions. As a result,
a total of 9000 executions (75 × 4 × 30) were carried out. Before performing the
statistical tests, we first checked whether the data followed a normal distribution
by applying the Shapiro-Wilks test. Where the data was distributed normally,
we later applied an ANOVA test. Otherwise, we used the Kruskal–Wallis (KW)
test. This statistical study allows us to assess whether or not there were mean-
ingful differences between the compared algorithms with a confidence level of
99%.

5 Analysis of the Results Obtained by Our Proposals

In this section, we summarize and analyze the results of using the four proposed
HSA’s variants (HSAProp, HSAExp, HSALog, and HSARand) on all the problem
instances, following the next methodology. First, we analyze the behavior of
these variants considering the results shown in the Table 4. The columns 2–5
show the average of the best cost values found by these four variants for the
75 instances grouped by their corresponding distribution network. The minimal
cost values found by each group are boldfaced. In the last column, the results of
the Kruskall-Wallis test are summarized, where the symbol “+” indicates that
the behavior of the four HSA’s variants are statistically similar, while the symbol
“-” specifies that these behaviors are significantly different. Secondly, we analyze
the temperature decay for each proposed HSA taking into account the variation
of the temperature parameter during the search, as shown in the Fig. 2.

Regarding the quality point of view, HSAProp finds the best cost in many
more instances than the rest of variants, i.e. HSAProp achieves the best solu-
tions in eight instances, followed by HSAExp with three, HSARand with two,
and HSALog with only one instance (see the boldfaced values in the Table 4).
These differences between the behaviors are supported by the KW results, which
indicate that the cooling schemes drive the search in significant different ways,
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Table 4. Averages of the best cost values found by each proposed variant, which are
grouped by network.

Network HSAProp HSAExp HSALog HSARand KW

HG-MP-1 335882,80 338817,60 338223,00 338250,60 –

HG-MP-2 298842,40 304934,80 298651,80 297241,60 –

HG-MP-3 387088,80 371490,40 386142,80 386133,60 –

HG-MP-4 690033,40 698058,60 691564,60 697496,40 –

HG-MP-5 722217,60 722878,00 718754,80 724301,00 –

HG-MP-6 741638,20 747825,80 751994,80 742786,60 –

HG-MP-7 817261,80 825763,40 831011,80 812428,20 –

HG-MP-8 855478,60 862003,00 867300,00 866820,20 –

HG-MP-9 834821,40 841512,20 842372,60 845829,40 –

HG-MP-10 788422,20 796010,80 801549,60 809821,60 –

HG-MP-11 909037,80 915537,80 915997,20 912114,80 –

HG-MP-12 1046426,00 1043728,20 1054274,40 1058030,60 –

HG-MP-13 1179568,00 1196634,00 1190972,00 1189460,00 –

HG-MP-14 1085194,80 1092782,40 1087786,20 1087889,40 –

HG-MP-15 1161200,00 1155254,00 1166694,00 1170664,00 –

Fig. 2. Average temperature decay during the search.

strengthening the search when the proportional scheme is used. This scheme pro-
duces a temperature decay that allow an adequate exploration at the beginning,
enabling a greater exploitation at the ending of the search.

If the Fig. 2 is analyzed, no quick temperature convergence to zero is observed
when HSAProp and HSALog are executed, but the temperature decay is greater
in the first one. This last property is the reason of the HSAProp’s success to find
the minimal cost values in more than 50% of the instances. Conversely, regarding
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Table 5. Average of the best TIC values obtained by ILS and HSAProp for all instances
grouped by the corresponding network. The best values are boldfaced.

Network ILS HSAProp Network ILS HSAProp

HG-MP-1 339200 335883 HG-MP-9 831200 834821

HG-MP-2 303800 298842 HG-MP-10 790600 788422

HG-MP-3 389200 387089 HG-MP-11 907000 909038

HG-MP-4 694200 690033 HG-MP-12 1022800 1046426

HG-MP-5 728200 722218 HG-MP-13 1190400 1179568

HG-MP-6 750400 741638 HG-MP-14 1070200 1085195

HG-MP-7 818000 817262 HG-MP-15 1122600 1161200

HG-MP-8 851600 855479

HSAExp and HSARand, the temperature converges quickly to values close to zero
restricting the exploration at the beginning of the search, although HSAExp

outperforms HSARand when the solution quality is analysed. It is remarkable
that, the stop condition is achieved by all HSA’s variants when the number of
evaluations (EPANET calls) is equal to 1,500,000 but the temperature remains
greater than zero.

Summarizing, the proportional cooling scheme allows HSAProp outperforms
the remaining HSA’s variants, by balancing the exploitation and exploration
during the search. As a consequence, HSAProp obtains the best networks designs
doing the same computational effort than the others variants.

6 Comparison of HSAP rop and the Literature Approaches

Regarding that HSAProp obtained the best results, we select this variant to com-
pare its performance with the ILS proposed in [20]. This metaheuristic is chosen
from literature for this comparison, since its authors also used the HydroGen
instances to test it. In this way, our results can be compared with ones of the
state-of-the-art, allowing to know the level of quality reached by our proposal.

The methodology used to analyze the results is described in the following.
First, we study the HSA behavior comparing the best cost values found by
HSAProp and ILS [20] for the 75 instances, grouped by their corresponding dis-
tribution network, as presented in the Table 5. Secondly, we analyze the HSAProp

convergence, in comparison with ILS, taking into account the cost values found
at the 1e+05, 3e+05, 5e+05, 10e+05, and 15e+05 EPANET calls (evaluations),
as shown in the Fig. 3. Besides, the HSA’s execution times (in seconds) to carry
out the maximum number of evaluations for each test case, grouped by network,
are shown in the Fig. 4. Note that, we only present the HSA’s total execution
time for all test cases, because no data about this metric are reported by De
Corte and Sörensen in [20].
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Analyzing the Table 5, we detect that HSAProp finds solutions with less TIC
values than the ones of ILS in nine networks. As a consequence, in 60% of the
problem instances better cost values are found when they are solved by HSAProp.
The HSA advantage arises out of the Boltzmann probability application to accept
high TIC values, which allows to diversify the search to escape from local optima.

From the convergence point of view, we observe that HSAProp finds solutions
with TIC values near to the best ones in 80% of the instances, with only 1e+05
evaluations. Instead, ILS needs at least 3e+05 evaluations for that, besides this
is achieved in only 66% of the test cases.
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Fig. 3. Evolution of the TIC values during the search for all instances.
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Fig. 4. Average of the total HSAProp execution times for all instances grouped by the
corresponding network.

Evaluating both the Fig. 4 and the Table 2 together, we notice that the HSA’s
execution time is affected by the number of pipes and demand nodes. In this way,
five groups of three networks can be formed exhibiting similar execution times.
These instances have consecutive numbers, e.g. the set of the HG-MP-1, 2, and 3
networks have similar number of pipes and demand nodes, and so on. Being the set
formed by the HG-MP-13, 14, and 15 networks the most expensive cases to solve.
Furthermore, analyzing what happened into each set of networks, the network with
more demand nodes consumes less execution time than the other two, since more
feasible solutions exist and HSA needs less time to find one of them.

Summarizing, HSAProp outperforms ILS for the 60% of the problem instances
when the result quality is considered. Moreover, a quick convergence to good
solutions is also evidenced by our proposal in most of the problem instances.
Furthermore, the HSA’s runtime is affected by the growing and combination of
the number of pipes and demand nodes.

7 Conclusions

In this paper, we have proposed water distribution network designs consider-
ing the multi-period settings with time varying demand patterns. The tech-
nique proposed to obtain these network designs is a hybrid Simulated Anneal-
ing algorithm, called HSA, which solves the hydraulic equations by using the
EPANET 2.0 toolkit. HSA combines an WDND-adapted SA with the MP-
GRASP local search [20]. Furthermore, four different HSA’s variants (HSAProp,
HSAExp, HSALog, and HSARand) have been created by applying the propor-
tional, exponential, logarithmic, and random cooling schemes respectively. For
this study, we have tested 75 instances that come from 15 different HydroGen
networks.

An important point is that all the proposed HSA’s variants had an equiva-
lent computational effort, because all of them carried out the same number of
evaluations. In this context HSAProp, the algorithm that uses the proportional
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cooling scheme to reduce the temperature, found the best networks designs out-
performing the remaining proposals.

Moreover, HSAProp’s results were compared with the obtained by the ILS
proposed in [20] to solve this problem. As a consequence, we observed that this
HSA variant also outperformed the results obtained by ILS in more than half
(60%) of instances. Additionally, HSA achieved a better exploration than ILS,
because of the Boltzmann probability application to accept solutions that can
explore new areas of the search space. This advantage combined with the local
search allowed HSA to converge quickly on the best solutions.

For future works, we will improve the HSA to solve the multi-period WDND
optimization problem, by introducing changes in the initialization method of
the temperature. We are also interested in testing larger dimension instances, as
close as possible to real scenarios.
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