15 research outputs found
Avoiding lodging in irrigated spring wheat. I. Stem and root structural requirements
A model of the lodging process has been successfully adapted for use on spring wheat grown in North-West Mexico (NWM). The lodging model was used to estimate the lodging-associated traits required to enable spring wheat grown in NWM with a typical yield of 6 t ha−1 and plant height of 0.7 m to achieve a lodging return period of 25 years. Target traits included a root plate spread of 51 mm and stem strength of the bottom internode of 268 N mm. These target traits increased to 54.5 mm and 325 N mm, respectively, for a crop yielding 10 t ha−1. Analysis of multiple genotypes across three growing seasons enabled relationships between both stem strength and root plate spread with structural dry matter to be quantified. A NWM lodging resistant ideotype yielding 6 t ha−1 would require 3.93 t ha−1 of structural stem biomass and 1.10 t ha−1 of root biomass in the top 10 cm of soil, which would result in a harvest index (HI) of 0.46 after accounting for chaff and leaf biomass. A crop yielding 10 t ha−1 would achieve a HI of 0.54 for 0.7 m tall plants or 0.41 for more typical 1.0 m tall plants. This study indicates that for plant breeders to achieve both high yields and lodging-proofness they must either breed for greater total biomass or develop high yielding germplasm from shorter crops
Mass calibration of DES Year-3 clusters via SPT-3G CMB cluster lensing
We measure the stacked lensing signal in the direction of galaxy clusters in the Dark Energy Survey Year 3 (DES Y3) redMaPPer sample, using cosmic microwave background (CMB) temperature data from SPT-3G, the third-generation CMB camera on the South Pole Telescope (SPT). Here, we estimate the lensing signal using temperature maps constructed from the initial 2 years of data from the SPT-3G 'Main' survey, covering 1500 deg2 of the Southern sky. We then use this lensing signal as a proxy for the mean cluster mass of the DES sample. The thermal Sunyaev-Zel'dovich (tSZ) signal, which can contaminate the lensing signal if not addressed, is isolated and removed from the data before obtaining the mass measurement. In this work, we employ three versions of the redMaPPer catalogue: a Flux-Limited sample containing 8865 clusters, a Volume-Limited sample with 5391 clusters, and a Volume&Redshift-Limited sample with 4450 clusters. For the three samples, we detect the CMB lensing signal at a significance of 12.4σ, 10.5σ and 10.2σ and find the mean cluster masses to be M 200m = 1.66±0.13 [stat.]± 0.03 [sys.], 1.97±0.18 [stat.]± 0.05 [sys.], and 2.11±0.20 [stat.]± 0.05 [sys.]×1014 M⊙, respectively. This is a factor of ∼ 2 improvement relative to the precision of measurements with previous generations of SPT surveys and the most constraining cluster mass measurements using CMB cluster lensing to date. Overall, we find no significant tensions between our results and masses given by redMaPPer mass-richness scaling relations of previous works, which were calibrated using CMB cluster lensing, optical weak lensing, and velocity dispersion measurements from various combinations of DES, SDSS and Planck data. We then divide our sample into 3 redshift and 3 richness bins, finding no significant discrepancies with optical weak-lensing calibrated masses in these bins. We forecast a 5.7% constraint on the mean cluster mass of the DES Y3 sample with the complete SPT-3G surveys when using both temperature and polarization data and including an additional ∼ 1400 deg2 of observations from the 'Extended' SPT-3G survey
Perspectives on Therapeutic Progress: 11-14 Year-Olds’ Reflections
AbstractPurposeThis qualitative analysis aimed to understand therapy outcomes from the viewpoint of children who have completed an intensive ten-day stuttering therapy program. There have been reports of quantitative outcomes of stuttering therapy (e.g., changes in stuttering frequency, changes in OASES scores), but there is a gap in the literature regarding children's views on therapeutic progress when provided with open-ended prompts.MethodsSeven children who stutter (mean age = 12;1, range 11;10-14;3), 6 males and 1 female, were prompted to answer the questions “what is going well?” and “what are small signs of progress?”. These questions were answered on the first day of therapy and the last day of therapy (day 10) during individual face-to-face Solution Focused Brief Therapy (de Shazer, 1985) interviews with a skilled clinician. The responses were then phenomenologically analysed to uncover primary categories and subcategories.ResultsPhenomenological analysis revealed that communication abilities, adaptive affective/cognitive status, and adequate social support were the three primary categories that children attributed to “what is going well” at both day 1 and day 10. Changes in communication, adaptive affective/cognitive status, and relaxed bodily state were the three primary categories related to “what are small signs of progress” at both day 1 and day 10.ConclusionsThis insight into how children view their own competency and understand the steps needed to make positive changes is meaningful for clinicians working with children in this age group who stutter in order to inform clinical decision making and guide therapeutic activities. The results implicate the importance of helping children 1) realize positive aspects of the situation and 2) provide specific, detailed accounts of their goals so that goal-directed therapeutic progress can take place
A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set
We present a sample-variance-limited measurement of the temperature power spectrum () of the cosmic microwave background (CMB) using observations of a field made by SPT-3G in 2018. We report multifrequency power spectrum measurements at 95, 150, and 220GHz covering the angular multipole range . We combine this measurement with the published polarization power spectrum measurements from the 2018 observing season and update their associated covariance matrix to complete the SPT-3G 2018 data set. This is the first analysis to present cosmological constraints from SPT , , and power spectrum measurements jointly. We blind the cosmological results and subject the data set to a series of consistency tests at the power spectrum and parameter level. We find excellent agreement between frequencies and spectrum types and our results are robust to the modeling of astrophysical foregrounds. We report results for CDM and a series of extensions, drawing on the following parameters: the amplitude of the gravitational lensing effect on primary power spectra , the effective number of neutrino species , the primordial helium abundance , and the baryon clumping factor due to primordial magnetic fields . We find that the SPT-3G 2018 data are well fit by CDM with a probability-to-exceed of . For CDM, we constrain the expansion rate today to and the combined structure growth parameter to . The SPT-based results are effectively independent of Planck, and the cosmological parameter constraints from either data set are within of each other. (abridged
Testing the CDM Cosmological Model with Forthcoming Measurements of the Cosmic Microwave Background with SPT-3G
International audienceWe forecast constraints on cosmological parameters enabled by three surveys conducted with SPT-3G, the third-generation camera on the South Pole Telescope. The surveys cover separate regions of 1500, 2650, and 6000 to different depths, in total observing 25% of the sky. These regions will be measured to white noise levels of roughly 2.5, 9, and 12 , respectively, in CMB temperature units at 150 GHz by the end of 2024. The survey also includes measurements at 95 and 220 GHz, which have noise levels a factor of ~1.2 and 3.5 times higher than 150 GHz, respectively, with each band having a polarization noise level ~ times higher than the temperature noise. We use a novel approach to obtain the covariance matrices for jointly and optimally estimated gravitational lensing potential bandpowers and unlensed CMB temperature and polarization bandpowers. We demonstrate the ability to test the model via the consistency of cosmological parameters constrained independently from SPT-3G and Planck data, and consider the improvement in constraints on extension parameters from a joint analysis of SPT-3G and Planck data. The cosmological parameters are typically constrained with uncertainties up to ~2 times smaller with SPT-3G data, compared to Planck, with the two data sets measuring significantly different angular scales and polarization levels, providing additional tests of the standard cosmological model