25 research outputs found
Use of soil and climate data to assess the risk of agricultural drought for policy support in Europe.
This paper describes the use of soil and climatic data for assessing the risk of drought in Europe. Soil moisture regimes are defined for soil classification purposes and these can be used to delineate areas with the same type of soil climate. Maps showing the distribution of arid soils in USA and dry areas in Southern Europe are presented. In the case of agricultural drought, it is the soil water available to plants (SWAP) that is the most important soil factor in assessing this risk and a simple model for estimating this is described. This model can be linked to spatial and point data from the European Soil Database. In the absence of sufficient soil water retention measurements, preliminary maps of SWAP in Europe have been produced using pedotransfer rules. The study concludes that basic soil maps can be used to identify some areas where agricultural drought is likely to be a problem. However more precise modelling of droughtiness, based on interactions of soil available water with the average soil moisture deficit, estimated from meteorological data, is needed, to support policy making today
Integrated monitoring and trans national coordination to support sustainable land management strategies: ideas for new joint Euro-Mediterranean initiatives: special EU report
The aim ofthis paper is double:
I. To discuss and comment some of the achievement reached by the MEDCOASTLAND
Thematic Network in relation to desertification indicators;
2. To present some initiatives, recently accomplished or currently on-going at the
European/Mediterranean level, which could be used as examples, or exported, in the frame of
new, integrated joint Euro-Mediterranean initiatives which could be promoted with reference
to the European Commission's 7th Framework Programme (7th FP). The projects considered are
MEDRAP, related to "intemational and regional coordination and harmonisation" and
DESERTWATCII, related to "data based operational monitoring system"
Mapping Spatio-Temporal Soil Erosion Patterns in the Candelaro River Basin, Italy, Using the G2 Model with Sentinel2 Imagery
This study aims at mapping soil erosion caused by water in the Candelaro river basin, Apulia region, Italy, using the G2 erosion model. The G2 model can provide erosion maps and statistical figures at month-time intervals, by applying non data-demanding alternatives for the estimation of all the erosion factors. In the current research, G2 is taking a step further with the introduction of Sentinel2 satellite images for mapping vegetation retention factor on a fine scale; Sentinel2 is a ready-to-use, image product of high quality, freely available by the European Space Agency. Although only three recent cloud-free Sentinel2 images covering Candelaro were found in the archive, new solutions were elaborated to overcome time-gaps. The study in Candelaro resulted in a mean annual erosion rate of 0.87 t ha−1 y−1, while the autumn months were indicated to be the most erosive ones, with average erosion rates reaching a maximum of 0.12 t ha−1 in September. The mixed agricultural-natural patterns revealed to be the riskiest surfaces for most months of the year, while arable land was the most extensive erosive land cover category. The erosion maps will allow competent authorities to support relevant mitigation measures. Furthermore, the study in Candelaro can play the role of a pilot study for the whole Apulia region, where erosion studies are rather limited
A review of coupled hydrologic and crop growth models
Abstract Coupling hydrologic and crop models is becoming an increasingly important approach in the development of agro-hydrologic theme. Scientists and decision makers working to address issues in the areas of resource conservation and agricultural productivity are interested in the complementary processing of the two coupled systems. The objective of the present work is to review relevant studies related to hydrologic and crop models coupling, and to analyze the domain applicability, limitations, and other considerations
How Film Mulch Increases the Corn Yield by Improving the Soil Moisture and Temperature in the Early Growing Period in a Cool, Semi-Arid Area
Film mulch increases the crop grain yield via topsoil moisture and temperature improvement in cool, semi-arid areas, but little is known about the role of the hydrological and thermic relationship between early and later crop growth seasons in the improving grain yield. We conducted a field experiment to compare polyethylene film mulching (PM) with no mulching (CK) in 2014 and 2015 on the semi-arid Loess Plateau of China. Compared to CK, PM decreased evapotranspiration before the twelve-leaf stage (V12), but increased evapotranspiration after the V12 stage, and significantly increased the topsoil temperature before the six-leaf stage (V6) and the accumulation of soil growing degree days. Corn plants with PM treatment reached the V6 stage earlier, significantly enhancing the contemporary dry matter accumulation. The harvest index, 100-grain weight, and grain yield significantly increased in PM relative to CK in both years. The growing period to the whole growing season evapotranspiration ratio had a negative correlation with the grain yield before the V12 stage, but a positive correlation after the V12 stage. The grain yield had a negative correlation with the air growing degree days (GDDair) before the V6 stage, but positive correlation from silking to harvest. Conclusively, film mulch promoted the early development of maize via an increased soil temperature before the V6 stage, saved soil water before the V12 stage, resulted in a longer grain-filling period, and increased the GDDair and evapotranspiration during the grain-filling period, which is key to increasing the maize yield
GEO-6 assessment for the pan-European region
Through this assessment, the authors and the United Nations Environment Programme (UNEP) secretariat are providing an objective evaluation and analysis of the pan-European environment designed to support environmental decision-making at multiple scales. In this assessment, the judgement of experts is applied to existing knowledge to provide scientifically credible answers to policy-relevant questions. These questions include, but are not limited to the following:• What is happening to the environment in the pan-European region and why?• What are the consequences for the environment and the human population in the pan-European region?• What is being done and how effective is it?• What are the prospects for the environment in the future?• What actions could be taken to achieve a more sustainable future?<br/
Mapping Spatio-Temporal Soil Erosion Patterns in the Candelaro River Basin, Italy, Using the G2 Model with Sentinel2 Imagery
This study aims at mapping soil erosion caused by water in the Candelaro river basin, Apulia region, Italy, using the G2 erosion model. The G2 model can provide erosion maps and statistical figures at month-time intervals, by applying non data-demanding alternatives for the estimation of all the erosion factors. In the current research, G2 is taking a step further with the introduction of Sentinel2 satellite images for mapping vegetation retention factor on a fine scale; Sentinel2 is a ready-to-use, image product of high quality, freely available by the European Space Agency. Although only three recent cloud-free Sentinel2 images covering Candelaro were found in the archive, new solutions were elaborated to overcome time-gaps. The study in Candelaro resulted in a mean annual erosion rate of 0.87 t ha−1 y−1, while the autumn months were indicated to be the most erosive ones, with average erosion rates reaching a maximum of 0.12 t ha−1 in September. The mixed agricultural-natural patterns revealed to be the riskiest surfaces for most months of the year, while arable land was the most extensive erosive land cover category. The erosion maps will allow competent authorities to support relevant mitigation measures. Furthermore, the study in Candelaro can play the role of a pilot study for the whole Apulia region, where erosion studies are rather limited