27 research outputs found

    Motivations, Barriers and Risk-Taking When Investing in Cryptocurrencies

    No full text
    The cryptocurrency market is very young, volatile, and highly risky. By the end of 2020, a new bull run started, and the prices of several cryptocurrencies reached record-breaking highs. The factors affecting this rise of cryptocurrencies include the impacts of the COVID-19 pandemic, the economic crisis and the global increase in the inflation rate, as well as the gradual acceptance and adoption of cryptocurrencies by people worldwide. This exploratory research is focused on this last factor, i.e., using cryptocurrency and with it, the associated support of its ecosystem (e.g., mining, staking). A survey was carried out investigating the motivational factors and barriers to investment in cryptocurrency for Czech representatives of Generations Y and Z (18–42 years; n = 468). The geographic scope was nationwide, and quota sampling was used. Notably, this survey was carried out prior to the global COVID-19 pandemic outbreak, and it is thus not affected by the pandemic and its related economic impacts. The article investigates the dependency between the individual motivational factors and barriers from the perspective of the tendency to take risks (using the risk propensity scale), according to gender and representation of Generations Y and Z. The lack of information on this form of investment is considered as the main barrier to investment in cryptocurrency, with respect to sex and generations. Compared to that, a negative experience with investment in cryptocurrency constitutes the most minor barrier. Respondents that have a tendency to take risks are mostly put off by their lack of experience with investment in general. The main motivational factor for investment in cryptocurrency, with respect to sex and generations, is considered to be the speed of increase in cryptocurrency value. On the other hand, the least encouraging factor is the opportunity to use the high volatility of cryptocurrency for speculative trading. Interestingly, this factor mostly encourages respondents that do not have a tendency to take risks. The findings are discussed, along with the presentation of their implications for practice and the directions of further explanatory research

    Changes in Electrostatic Surface Potential of Na+/K+-ATPase Cytoplasmic Headpiece Induced by Cytoplasmic Ligand(s) Binding

    Get PDF
    A set of single-tryptophan mutants of the Na+/K+-ATPase isolated, large cytoplasmic loop connecting transmembrane helices M4 and M5 (C45) was prepared to monitor effects of the natural cytoplasmic ligands (i.e., Mg2+ and/or ATP) binding. We introduced a novel method for the monitoring of the changes in the electrostatic surface potential (ESP) induced by ligand binding, using the quenching of the intrinsic tryptophan fluorescence by acrylamide or iodide. This approach opens a new way to understanding the interactions within the proteins. Our experiments revealed that the C45 conformation in the presence of the ATP (without magnesium) substantially differed from the conformation in the presence of Mg2+ or MgATP or in the absence of any ligand not only in the sense of geometry but also in the sense of the ESP. Notably, the set of ESP-sensitive residues was different from the set of geometry-sensitive residues. Moreover, our data indicate that the effect of the ligand binding is not restricted only to the close environment of the binding site and that the information is in fact transmitted also to the distal parts of the molecule. This property could be important for the communication between the cytoplasmic headpiece and the cation binding sites located within the transmembrane domain

    Anillin propels myosin-independent constriction of actin rings

    No full text
    International audienceAbstract Constriction of the cytokinetic ring, a circular structure of actin filaments, is an essential step during cell division. Mechanical forces driving the constriction are attributed to myosin motor proteins, which slide actin filaments along each other. However, in multiple organisms, ring constriction has been reported to be myosin independent. How actin rings constrict in the absence of motor activity remains unclear. Here, we demonstrate that anillin, a non­motor actin crosslinker, indispensable during cytokinesis, autonomously propels the contractility of actin bundles. Anillin generates contractile forces of tens of pico-Newtons to maximise the lengths of overlaps between bundled actin filaments. The contractility is enhanced by actin disassembly. When multiple actin filaments are arranged into a ring, this contractility leads to ring constriction. Our results indicate that passive actin crosslinkers can substitute for the activity of molecular motors to generate contractile forces in a variety of actin networks, including the cytokinetic ring

    Integrative Binding Sites within Intracellular Termini of TRPV1 Receptor

    No full text
    <div><p>TRPV1 is a nonselective cation channel that integrates wide range of painful stimuli. It has been shown that its activity could be modulated by intracellular ligands PIP2 or calmodulin (CaM). The detailed localization and description of PIP2 interaction sites remain unclear. Here, we used synthesized peptides and purified fusion proteins of intracellular regions of TRPV1 expressed in <em>E.coli</em> in combination with fluorescence anisotropy and surface plasmon resonance measurements to characterize the PIP2 binding to TRPV1. We characterized one PIP2 binding site in TRPV1 N-terminal region, residues F189-V221, and two independent PIP2 binding sites in C–terminus: residues K688-K718 and L777-S820. Moreover we show that two regions, namely F189-V221 and L777-S820, overlap with previously localized CaM binding sites. For all the interactions the equilibrium dissociation constants were estimated. As the structural data regarding C-terminus of TRPV1 are lacking, restraint-based molecular modeling combined with ligand docking was performed providing us with structural insight to the TRPV1/PIP2 binding. Our experimental results are in excellent agreement with our <em>in silico</em> predictions.</p> </div

    PIP2 binds to the C-terminal proximal region of TRPV1.

    No full text
    <p>Steady-state fluorescence anisotropy measurement of interaction between fluorescently labeled phosphatidyl inositol-4, 5-bisphosphate (PIP2-Bodipy) and synthetic peptide corresponding to the cytoplasmic tail at the C terminal proximal region K688-K718 of TRPV1 (pTRPV1–CTp) or its Q700A/R701A (pTRPV1–CTp-Q700A/R701A) and K694A/K698A/K710A (pTRPV1–CTp-K694A/K698A/K710A) mutant variant, respectively. PIP2-Bodipy (10 nM) was titrated with with indicated concentrations of the peptides and the bound fraction (F<sub>B</sub>) of PIP2 Bodipy was calculated according to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0048437#pone.0048437.e001" target="_blank">Equation 1</a> as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0048437#s4" target="_blank">Material and Methods</a>. The solid lines represent binding isotherms determined by nonlinear least-squares analysis of the isotherm using an <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0048437#pone.0048437.e002" target="_blank">Equation 2</a> as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0048437#s4" target="_blank">Material and Methods</a>. Values represent the mean ± SD from at least three independent experiments.</p
    corecore