64 research outputs found

    Menstrual Blood as a Potential Source of Endometrial Derived CD3+ T Cells

    Get PDF
    Studies of T cell-mediated immunity in the human female genital tract have been problematic due to difficulties associated with the collection of mucosal samples. Consequently, most studies rely on biopsies from the lower female genital tract or remnant tissue from hysterectomies. Availability of samples from healthy women is limited, as most studies are carried out in women with underlying pathologies. Menstruation is the cyclical sloughing off of endometrial tissue, and thus it should be a source of endometrial cells without the need for a biopsy. We isolated and phenotyped T cells from menstrual and peripheral blood and from endometrial biopsy-derived tissue from healthy women to determine the types of T cells present in this compartment. Our data demonstrated that T cells isolated from menstrual blood are a heterogeneous population of cells with markers reminiscent of blood and mucosal cells as well as unique phenotypes not represented in either compartment. T cells isolated from menstrual blood expressed increased levels of HLA-DR, αEβ7 and CXCR4 and reduced levels of CD62L relative to peripheral blood. Menstrual blood CD4+ T cells were enriched for cells expressing both CCR7 and CD45RA, markers identifying naïve T cells and were functional as determined by antigen-specific intracellular cytokine production assays. These data may open new avenues of investigation for cell mediated immune studies involving the female reproductive tract without the need for biopsies

    Distinct phenotype of neutrophil, monocyte, and eosinophil populations indicates altered myelopoiesis in a subset of patients with multiple myeloma

    Get PDF
    Hematologic malignancies, including multiple myeloma (MM), promote systemic immune dysregulation resulting in an alteration and increased plasticity of myeloid cell subsets. To determine the heterogeneity of the myeloid cell compartment in the peripheral blood of patients with MM, we performed a detailed investigation of the phenotype and function of myeloid subpopulations. We report that a subset of MM patients exhibits a specific myeloid cell phenotype indicative of altered myelopoiesis characterized by significant changes in the properties of circulating granulocytic, monocytic, and eosinophilic populations. The subset, referred to as MM2, is defined by a markedly elevated level of CD64 (FcγRI) on the surface of circulating neutrophils. Compared to healthy controls or MM1 patients displaying intermediate levels of CD64, neutrophils from MM2 patients exhibit a less differentiated phenotype, low levels of CD10 and CXC chemokine receptor 2 (CXCR2), increased capacity for the production of mitochondrial reactive oxygen species, and an expansion of CD16neg immature neutrophil subset. Classical and patrolling monocytes from MM2 patients express elevated levels of CD64 and activation markers. MM2 eosinophils display lower levels of C-C Chemokine receptor 3 (CCR3), Toll-like receptor 4 (TLR4, CD284), and tissue factor (TF, CD142). The MM2 (CD64high) phenotype is independent of age, race, sex, and treatment type. Characteristic features of the MM2 (CD64high) phenotype are associated with myeloma-defining events including elevated involved/uninvolved immunoglobulin free light chain (FLC) ratio at diagnosis. Detailed characterization of the altered myeloid phenotype in multiple myeloma will likely facilitate the identification of patients with an increased risk of disease progression and open new avenues for the rational design of novel therapeutic approaches

    Differences in time of virus appearance in the blood and virus-specific immune responses in intravenous and intrarectal primary SIV(mac251) infection of rhesus macaques; a pilot study

    Get PDF
    BACKGROUND: HIV-I can be transmitted by intravenous inoculation of contaminated blood or blood product or sexually through mucosal surfaces. Here we performed a pilot study in the SIV(mac251) macaque model to address whether the route of viral entry influences the kinetics of the appearance and the size of virus-specific immune in different tissue compartments. METHODS: For this purpose, of 2 genetically defined Mamu-A*01-positive macaques, 1 was exposed intravenously and the other intrarectally to the same SIV(mac251) viral stock and virus-specific CD8+ T-cells were measured within the first 12 days of infection in the blood and at day 12 in several tissues following euthanasia. RESULTS: Virus-specific CD8+ T-cell responses to Gag, Env, and particularly Tat appeared earlier in the blood of the animal exposed by the mucosal route than in the animal exposed intravenously. The magnitude of these virus-specific responses was consistently higher in the systemic tissues and GALT of the macaque exposed by the intravenous route, suggesting a higher viral burden in the tissues as reflected by the faster appearance of virus in plasma. Differences in the ability of the virus-specific CD8+ T-cells to respond in vitro to specific peptide stimulation were also observed and the greatest proliferative ability was found in the GALT of the animal infected by the intrarectal route. CONCLUSIONS: These data may suggest that the natural mucosal barrier may delay viral spreading. The consequences of this observation, if confirmed in studies with a larger number of animals, may have implications in vaccine development

    Limited Transplantation of Antigen-Expressing Hematopoietic Stem Cells Induces Long-Lasting Cytotoxic T Cell Responses

    Get PDF
    Harnessing the ability of cytotoxic T lymphocytes (CTLs) to recognize and eradicate tumor or pathogen-infected cells is a critical goal of modern immune-based therapies. Although multiple immunization strategies efficiently induce high levels of antigen-specific CTLs, the initial increase is typically followed by a rapid contraction phase resulting in a sharp decline in the frequency of functional CTLs. We describe a novel approach to immunotherapy based on a transplantation of low numbers of antigen-expressing hematopoietic stem cells (HSCs) following nonmyeloablative or partially myeloablative conditioning. Continuous antigen presentation by a limited number of differentiated transgenic hematopoietic cells results in an induction and prolonged maintenance of fully functional effector T cell responses in a mouse model. Recipient animals display high levels of antigen-specific CTLs four months following transplantation in contrast to dendritic cell-immunized animals in which the response typically declines at 4–6 weeks post-immunization. Majority of HSC-induced antigen-specific CD8+ T cells display central memory phenotype, efficiently kill target cells in vivo, and protect recipients against tumor growth in a preventive setting. Furthermore, we confirm previously published observation that high level engraftment of antigen-expressing HSCs following myeloablative conditioning results in tolerance and an absence of specific cytotoxic activity in vivo. In conclusion, the data presented here supports potential application of immunization by limited transplantation of antigen-expressing HSCs for the prevention and treatment of cancer and therapeutic immunization of chronic infectious diseases such as HIV-1/AIDS

    The Neonatal Fc Receptor (FcRn) Enhances Human Immunodeficiency Virus Type 1 (HIV-1) Transcytosis across Epithelial Cells

    Get PDF
    The mechanisms by which human immunodeficiency virus type 1 (HIV-1) crosses mucosal surfaces to establish infection are unknown. Acidic genital secretions of HIV-1-infected women contain HIV-1 likely coated by antibody. We found that the combination of acidic pH and Env-specific IgG, including that from cervicovaginal and seminal fluids of HIV-1-infected individuals, augmented transcytosis across epithelial cells as much as 20-fold compared with Env-specific IgG at neutral pH or non-specific IgG at either pH. Enhanced transcytosis was observed with clinical HIV-1 isolates, including transmitted/founder strains, and was eliminated in Fc neonatal receptor (FcRn)-knockdown epithelial cells. Non-neutralizing antibodies allowed similar or less transcytosis than neutralizing antibodies. However, the ratio of total:infectious virus was higher for neutralizing antibodies, indicating that they allowed transcytosis while blocking infectivity of transcytosed virus. Immunocytochemistry revealed abundant FcRn expression in columnar epithelia lining the human endocervix and penile urethra. Acidity and Env-specific IgG enhance transcytosis of virus across epithelial cells via FcRn and could facilitate translocation of virus to susceptible target cells following sexual exposure

    An action plan for pan-European defence against new SARS-CoV-2 variants.

    Get PDF
    COVID-19 cases are very high across Europe. Current measures are not reducing virus spread sufficiently, and new SARS-CoV-2 variants are emerging. The B.1.1.7 and B1.351 variants, first identified in the UK and South Africa, respectively, have spread to many European countries.1–5 Although the biological properties of these variants are yet to be characterised, epidemiological data suggest they have a higher transmissibility than the original variant.6,7 These viral properties could increase the effective reproduction number R in the population. In the case of B.1.1.7, estimates suggest R could increase from 1 to about 1.4 with no change in population behavior.3,4 If true, many countries that have succeeded in reducing R to 1 or less will be confronted with a novel wave of viral spread despite the current measures.8,9 Once a more contagious variant has established itself, stabilising the number of new infections will become increasingly difficult

    The Neonatal Fc Receptor (FcRn) Enhances Human Immunodeficiency Virus Type 1 (HIV-1) Transcytosis across Epithelial Cells

    Get PDF
    The mechanisms by which human immunodeficiency virus type 1 (HIV-1) crosses mucosal surfaces to establish infection are unknown. Acidic genital secretions of HIV-1-infected women contain HIV-1 likely coated by antibody. We found that the combination of acidic pH and Env-specific IgG, including that from cervicovaginal and seminal fluids of HIV-1-infected individuals, augmented transcytosis across epithelial cells as much as 20-fold compared with Env-specific IgG at neutral pH or non-specific IgG at either pH. Enhanced transcytosis was observed with clinical HIV-1 isolates, including transmitted/founder strains, and was eliminated in Fc neonatal receptor (FcRn)-knockdown epithelial cells. Non-neutralizing antibodies allowed similar or less transcytosis than neutralizing antibodies. However, the ratio of total:infectious virus was higher for neutralizing antibodies, indicating that they allowed transcytosis while blocking infectivity of transcytosed virus. Immunocytochemistry revealed abundant FcRn expression in columnar epithelia lining the human endocervix and penile urethra. Acidity and Env-specific IgG enhance transcytosis of virus across epithelial cells via FcRn and could facilitate translocation of virus to susceptible target cells following sexual exposure

    The neonatal Fc receptor (FcRn) enhances human immunodeficiency virus type 1 (HIV-1) transcytosis across epithelial cells

    Get PDF
    The mechanisms by which human immunodeficiency virus type 1 (HIV-1) crosses mucosal surfaces to establish infection are unknown. Acidic genital secretions of HIV-1-infected women contain HIV-1 likely coated by antibody. We found that the combination of acidic pH and Env- specific IgG, including that from cervicovaginal and seminal fluids of HIV-1-infected individuals, augmented transcytosis across epithelial cells as much as 20-fold compared with Env-specific IgG at neutral pH or non-specific IgG at either pH. Enhanced transcytosis was observed with clinical HIV-1 isolates, including transmitted/founder strains, and was eliminated in Fc neonatal receptor (FcRn)-knockdown epithelial cells. Non-neutralizing antibodies allowed similar or less transcytosis than neutralizing antibodies. However, the ratio of total:infectious virus was higher for neutralizing antibodies, indicating that they allowed transcytosis while blocking infectivity of transcytosed virus. Immunocytochemistry revealed abundant FcRn expression in columnar epithelia lining the human endocervix and penile urethra. Acidity and Env-specific IgG enhance transcytosis of virus across epithelial cells via FcRn and could facilitate translocation of virus to susceptible target cells following sexual exposure
    • …
    corecore