391 research outputs found

    HAB79: A new molecular dataset for benchmarking DFT and DFTB electronic couplings against high-level ab initio calculations

    Get PDF
    A new molecular dataset called HAB79 is introduced to provide ab initio reference values for electronic couplings (transfer integrals) and to benchmark density functional theory (DFT) and density functional tight-binding (DFTB) calculations. The HAB79 dataset is composed of 79 planar heterocyclic polyaromatic hydrocarbon molecules frequently encountered in organic (opto)electronics, arranged to 921 structurally diverse dimer configurations. We show that CASSCF/NEVPT2 with a minimal active space provides a robust reference method that can be applied to the relatively large molecules of the dataset. Electronic couplings are largest for cofacial dimers, in particular, sulfur-containing polyaromatic hydrocarbons, with values in excess of 0.5 eV, followed by parallel displaced cofacial dimers. V-shaped dimer motifs, often encountered in the herringbone layers of organic crystals, exhibit medium-sized couplings, whereas T-shaped dimers have the lowest couplings. DFT values obtained from the projector operator-based diabatization (POD) method are initially benchmarked against the smaller databases HAB11 (HAB7-) and found to systematically improve when climbing Jacob’s ladder, giving mean relative unsigned errors (MRUEs) of 27.7% (26.3%) for the generalized gradient approximation (GGA) functional BLYP, 20.7% (15.8%) for hybrid functional B3LYP, and 5.2% (7.5%) for the long-range corrected hybrid functional omega-B97X. Cost-effective POD in combination with a GGA functional and very efficient DFTB calculations on the dimers of the HAB79 database give a good linear correlation with the CASSCF/NEVPT2 reference data, which, after scaling with a multiplicative constant, gives reasonably small MRUEs of 17.9% and 40.1%, respectively, bearing in mind that couplings in HAB79 vary over 4 orders of magnitude. The ab initio reference data reported here are expected to be useful for benchmarking other DFT or semi-empirical approaches for electronic coupling calculations

    Neutrophil Extracellular Trap Induced Dendritic Cell Activation Leads to Th1 Polarization in Type 1 Diabetes

    Get PDF
    Neutrophils releasing neutrophil extracellular traps (NETs) infiltrate the pancreas prior to type 1 diabetes (T1D) onset; however, the precise nature of their contribution to disease remains poorly defined. To examine how NETs affect immune functions in T1D, we investigated NET composition and their effect on dendritic cells (DCs) and T lymphocytes in T1D children. We showed that T1D patient NET composition differs substantially from that of healthy donors and that the presence of T1D-NETs in a mixed peripheral blood mononuclear cell culture caused a strong shift toward IFNγ-producing T lymphocytes, mediated through activation of innate immunity cells in T1D samples. Importantly, in a monocyte-derived DC (moDC) culture, NETs induced cytokine production, phenotypic change and IFNγ-producing T cells only in samples from T1D patients but not in those from healthy donors. RNA-seq analysis revealed that T1D-NETs presence causes TGFβ downregulation and IFNα upregulation and creates pro-T1D signature in healthy moDCs

    Heart transplantation for cardiac light chain amyloidosis with subsequent autologous stem cell transplantation

    Get PDF
    AbstractOur report describes a case of 57-year-old man with manifest heart failure on the basis of cardiac amyloidosis, which was detected by endomyocardial biopsy. Due to the heart failure, the patient was unable to undergo myeloablative therapy. We changed our previous decision for conservative therapy of heart failure and the patient underwent heart transplantation. Autologous stem cell transplantation was performed 6 months later. After the successful stem cell transplantation, the serum free light chain lambda levels promptly decreased. One year later, their levels started again to increase. Chemotherapy was therefore initiated. The patient has now completed the seventh cycle of chemotherapy in good condition. The graft function is normal and the latest endomyocardial biopsy revealed no amyloid

    In-situ formation of magnesium silicide nanoparticles on the surface of the hydrogenated silicon films

    Get PDF
    The magnesium silicide nanoparticles were formed on the surface of hydrogenated silicon thin films by thermal evaporation, annealing and hydrogen plasma treatment. The high reactivity of silicon and magnesium leads to the self-formation of magnesium silicide nanoparticles (NPs). The reaction is stimulated in-situ by the low pressure hydrogen plasma. The presence of Mg2Si NPs was confirmed by SEM and Raman spectroscopy. The photothermal deflection spectroscopy (PDS) shows the enhanced optical absorption in the near infrared spectrum. The diode structures with insitu embedded Mg2Si NPs were characterized by the volt-ampere measurements in dark and under AM1.5 spectrum

    Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide

    Get PDF
    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 mu g center dot L-1 for Zn(II), 3 and 10 mu g center dot L-1 for Cd(II), 3 and 10 mu g center dot L-1 for Pb(II), 3 and 10 mu g center dot L-1 for Cu(II), and 3 and 10 mu g center dot L-1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 mu g center dot L-1 for Zn(II), 25 mu g center dot L-1 for Cd(II), 3 mu g center dot L-1 for Pb(II) and 3 mu g center dot L-1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters

    Quantifying the contribution of material and junction resistances in nano-networks

    Full text link
    Networks of nanowires and nanosheets are important for many applications in printed electronics. However, the network conductivity and mobility are usually limited by the inter-particle junction resistance, a property that is challenging to minimise because it is difficult to measure. Here, we develop a simple model for conduction in networks of 1D or 2D nanomaterials, which allows us to extract junction and nanoparticle resistances from particle-size-dependent D.C. resistivity data of conducting and semiconducting materials. We find junction resistances in porous networks to scale with nanoparticle resistivity and vary from 5 Ohm for silver nanosheets to 25 GOhm for WS2 nanosheets. Moreover, our model allows junction and nanoparticle resistances to be extracted from A.C. impedance spectra of semiconducting networks. Impedance data links the high mobility (~7 cm2/Vs) of aligned networks of electrochemically exfoliated MoS2 nanosheets to low junction resistances of ~670 kOhm. Temperature-dependent impedance measurements allow us to quantitatively differentiate intra-nanosheet phonon-limited band-like transport from inter-nanosheet hopping for the first time.Comment: 5 figure

    Priority questions in multidisciplinary drought research

    Get PDF
    Addressing timely and relevant questions across a multitude of spatio-temporal scales, state-of-the-art interdisciplinary drought research will likely increase in importance under projected climate change. Given the complexity of the various direct and indirect causes and consequences of a drier world, scientific tasks need to be coordinated efficiently. Drought-related research endeavors ranging from individual projects to global initiatives therefore require prioritization. Here, we present 60 priority questions for optimizing future drought research. This topical catalogue reflects the experience of 65 scholars from 21 countries and almost 20 fields of research in both natural sciences and the humanities. The set of drought-related questions primarily covers drought monitoring, impacts, forecasting, climatology, adaptation, as well as planning and policy. The questions highlight the increasingly important role of remote sensing techniques in drought monitoring, importance of drought forecasting and understanding the relationships between drought parameters and drought impacts, but also challenges of drought adaptation and preparedness policies

    Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture

    Get PDF
    BACKGROUND: Stromal fibroblasts associated with in situ and invasive breast carcinoma differ phenotypically from fibroblasts associated with normal breast epithelium, and these alterations in carcinoma-associated fibroblasts (CAF) may promote breast carcinogenesis and cancer progression. A better understanding of the changes that occur in fibroblasts during carcinogenesis and their influence on epithelial cell growth and behavior could lead to novel strategies for the prevention and treatment of breast cancer. To this end, the effect of CAF and normal breast-associated fibroblasts (NAF) on the growth of epithelial cells representative of pre-neoplastic breast disease was assessed. METHODS: NAF and CAF were grown with the nontumorigenic MCF10A epithelial cells and their more transformed, tumorigenic derivative, MCF10AT cells, in direct three-dimensional co-cultures on basement membrane material. The proliferation and apoptosis of MCF10A cells and MCF10AT cells were assessed by 5-bromo-2'-deoxyuridine labeling and TUNEL assay, respectively. Additionally, NAF and CAF were compared for expression of insulin-like growth factor II as a potential mediator of their effects on epithelial cell growth, by ELISA and by quantitative, real-time PCR. RESULTS: In relatively low numbers, both NAF and CAF suppressed proliferation of MCF10A cells. However, only NAF and not CAF significantly inhibited proliferation of the more transformed MCF10AT cells. The degree of growth inhibition varied among NAF or CAF from different individuals. In greater numbers, NAF and CAF have less inhibitory effect on epithelial cell growth. The rate of epithelial cell apoptosis was not affected by NAF or CAF. Mean insulin-like growth factor II levels were not significantly different in NAF versus CAF and did not correlate with the fibroblast effect on epithelial cell proliferation. CONCLUSION: Both NAF and CAF have the ability to inhibit the growth of pre-cancerous breast epithelial cells. NAF have greater inhibitory capacity than CAF, suggesting that the ability of fibroblasts to inhibit epithelial cell proliferation is lost during breast carcinogenesis. Furthermore, as the degree of transformation of the epithelial cells increased they became resistant to the growth-inhibitory effects of CAF. Insulin-like growth factor II could not be implicated as a contributor to this differential effect of NAF and CAF on epithelial cell growth
    corecore