603 research outputs found

    Overexpression of Parathyroid Hormone-related Protein in the Pancreatic Islets of Transgenic Mice Causes Islet Hyperplasia, Hyperinsulinemia, and Hypoglycemia

    Get PDF
    Parathyroid hormone-related protein (PTHrP) is produced by the pancreatic islet. It also has receptors on islet cells, suggesting that it may serve a paracrine or autocrine role within the islet. We have developed transgenic mice, which overexpress PTHrP in the islet through the use of the rat insulin II promoter (RIP). Glucose homeostasis in these mice is markedly abnormal; RIP-PTHrP mice are hypoglycemic in the postprandial and fasting states and display inappropriate hyperinsulinemia. At the end of a 24-hour fast, blood glucose values are 49 mg/dl in RIP-PTHrP mice, as compared to 77 mg/dl in normal littermates; insulin concentrations at this time are 6.3 and 3.9 ng/ml, respectively. Islet perifusion studies failed to demonstrate abnormalities in insulin secretion. In contrast, quantitative islet histomorphometry demonstrates that the total islet number and total islet mass are 2-fold higher in RIP-PTHrP mice than in their normal littermates. PTHrP very likely plays a normal physiologic role within the pancreatic islet. This role is most likely paracrine or autocrine. PTHrP appears to regulate insulin secretion either directly or indirectly, through developmental or growth effects on islet mass. PTHrP may have a role as an agent that enhances islet mass and/or enhances insulin secretion

    Neuronal Calcium Sensor Synaptotagmin-9 Is Not Involved in the Regulation of Glucose Homeostasis or Insulin Secretion

    Get PDF
    BACKGROUND:Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. METHODOLOGY/PRINCIPAL FINDINGS:In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. CONCLUSIONS:Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells

    Overexpression of Insulin Degrading Enzyme could Greatly Contribute to Insulin Down-regulation Induced by Short-Term Swimming Exercise

    Get PDF
    Exercise training is highly correlated with the reduced glucose-stimulated insulin secretion (GSIS), although it enhanced insulin sensitivity, glucose uptake and glucose transporter expression to reduce severity of diabetic symptoms. This study investigated the impact of short-term swimming exercise on insulin regulation in the Goto-Kakizaki (GK) rat as a non-obese model of non-insulin-dependent diabetes mellitus. Wistar (W/S) and GK rats were trained 2 hours daily with the swimming exercise for 4 weeks, and then the changes in the metabolism of insulin and glucose were assessed. Body weight was markedly decreased in the exercised GK rats compare to their non-exercised counterpart, while W/S rats did not show any exercise-related changes. Glucose concentration was not changed by exercise, although impaired glucose tolerance was improved in GK rats 120 min after glucose injection. However, insulin concentration was decreased by swimming exercise as in the decrease of GSIS after running exercise. To identify the other cause for exercise-induced insulin down-regulation, the changes in the levels of key factors involved in insulin production (C-peptide) and clearance (insulin-degrading enzyme; IDE) were measured in W/S and GK rats. The C-peptide level was maintained while IDE expression increased markedly. Therefore, these results showed that insulin down-regulation induced by short-term swimming exercise likely attributes to enhanced insulin clearance via IDE over-expression than by altered insulin production
    corecore