83 research outputs found

    The δ-phase of SrTeO3 at 780 K1

    Get PDF
    As part of a structural investigation of strontium tellurate(IV) (STO), SrTeO3, with particular emphasis on the crystal chemistry and phase transitions, the structure of the δ-phase has been determined at 780 K using a single-crystal analysis. Both structural and non-linear optical measurements indicate that STO undergoes a γ→δ second-order ferroelectric phase transition at 633 K from the C2 (γ) to the C2/m (δ) modification. Systematic differences between the similar γ- and δ-phase structures were determined and it was found that this phase transformation can be described by a displacive mechanism

    Betulin attenuated liver damage by prevention of hepatic mitochondrial dysfunction in rats with alcoholic steatohepatitis

    Get PDF
    Betulin, a pentacyclic triterpene, possesses antioxidant, anti-inflammatory and hepatoprotective properties. The aim of this study was to evaluate the impact of liver mitochondria in hepatoprotection of betulin using a rat model of alcoholic steatohepatitis induced by ethanol administration (4 g/kg, intragastric) for 8 weeks. The treatment with betulin (50 and 100 mg/kg b.w., intragastric) during this period attenuated the histological signs of steatohepatitis and lowered the serum and liver triglyceride contents, as well as the serum activities of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. Betulin (100 mg/kg) decreased the liver/body weight ratio and inhibited the increase in the serum levels of TNFα, IL-1β, TGFβ, and hyaluronic acid, demonstrating hepatoprotective, anti-inflammatory, and antifibrotic potential. Betulin also inhibited the formation of superoxide anions in mitochondria and the end-products of lipid peroxidation in liver tissue, the amount of which was significantly increased in ethanol-treated rats. The disturbances in mitochondrial respiration, uncoupling of oxidative phosphorylation and decreasing of mitochondrial complex I, II, and IV activities in rats with steatohepatitis, were reverted by betulin administration. The increased susceptibility of mitochondria to Ca2+-induced permeability transition pore formation in the hepatitis group was improved in rats treated with betulin. In conclusion, betulin, having antioxidant properties, exerts a beneficial effect in the rat model of alcoholic steatohepatitis via prevention of liver mitochondria dysfunction, which may be attributed to the inhibition of mitochondrial permeability transition

    Ferutinin Induces Membrane Depolarization, Permeability Transition Pore Formation, and Respiration Uncoupling in Isolated Rat Liver Mitochondria by Stimulation of  Ca 2+ -Permeability

    Get PDF
    It is well known that the terpenoid ferutinin (4-oxy-6-(4-oxybenzoyloxy) dauc-8,9-en), isolated from the plant Ferula tenuisecta, considerably increases the permeability of artificial and cellular membranes to Ca2+-ions and produces apoptotic cell death in different cell lines in a mitochondria-dependent manner. The present study was designed for further evaluation of the mechanism(s) of mitochondrial effects of ferutinin using isolated rat liver mitochondria. Our findings provide evidence for ferutinin at concentrations of 5–27 µM to decrease state 3 respiration and the acceptor control ratio in the case of glutamate/malate as substrates. Ferutinin alone (10–60 µM) also dose-dependently dissipated membrane potential. In the presence of Ca2+-ions, ferutinin (10–60 µM) induced considerable depolarization of the inner mitochondrial membrane, which was partially inhibited by EGTA, and permeability transition pore formation, which was diminished partly by cyclosporin A, and did not influence markedly the effect of Ca2+ on mitochondrial respiration. Ruthenium Red, a specific inhibitor of mitochondrial calcium uniporter, completely inhibited Ca2+ -induced mitochondria swelling and membrane depolarization, but did not affect markedly the stimulation of these Ca2+-dependent processes by ferutinin. We concluded that the mitochondrial effects of ferutinin might be primarily induced by stimulation of mitochondrial membrane Ca2+-permeability, but other mechanisms, such as driving of univalent cations, might be involved

    Towards Better Territorial Governance in Europe. A guide for practitioners, policy and decision makers based on contributions from the ESPON TANGO Project

    Get PDF
    Guides help you do things. You turn to them when you need to find out how to solve a problem. They are a form of knowledge transfer, written by experts but in a way that is accessible and helpful to a wide group of users. This Guide was written by the researchers on the ESPON applied research study of Territorial Approaches to New Governance (TANGO). It aims to help those persons and institutions that are delivering territorial governance across Europ

    Towards Better Territorial Governance in Europe. A guide for practitioners, policy and decision makers based on contributions from the ESPON TANGO Project

    Get PDF
    Guides help you do things. You turn to them when you need to find out how to solve a problem. They are a form of knowledge transfer, written by experts but in a way that is accessible and helpful to a wide group of users. This Guide was written by the researchers on the ESPON applied research study of Territorial Approaches to New Governance (TANGO). It aims to help those persons and institutions that are delivering territorial governance across Europe

    Human Stressors Are Driving Coastal Benthic Long-Lived Sessile Fan Mussel Pinna nobilis Population Structure More than Environmental Stressors.

    Get PDF
    Coastal degradation and habitat disruption are severely compromising sessile marine species. The fan shell Pinna nobilis is an endemic, vulnerable species and the largest bivalve in the Mediterranean basin. In spite of species legal protection, fan shell populations are declining. Models analyzed the contributions of environmental (mean depth, wave height, maximum wave height, period of waves with high energy and mean direction of wave source) versus human-derived stressors (anchoring, protection status, sewage effluents, fishing activity and diving) as explanatory variables depicting Pinna nobilis populations at a mesoscale level. Human stressors were explaining most of the variability in density spatial distribution of fan shell, significantly disturbing benthic communities. Habitat protection affected P. nobilis structure and physical aggression by anchoring reveals a high impact on densities. Environmental variables instead played a secondary role, indicating that global change processes are not so relevant in coastal benthic communities as human-derived impacts.Versión del editor4,411

    α-Lead tellurite from single-crystal data

    No full text
    The crystal structure of the title compound, α-PbTeO3 (PTO), has been reported previously by Mariolacos [Anz. Oesterr. Akad. Wiss. Math. Naturwiss. Kl. (1969), 106, 128–130], refined on powder data. The current determination at room temperature from data obtained from single crystals grown by the Czochralski method shows a significant improvement in the precision of the geometric parameters when all atoms have been refined anisotropically. The selection of a centrosymmetric (C2/c) structure model was confirmed by the second harmonic generation test. The asymmetric unit contains three formula units. The structure of PTO is built up of three types of distorted [PbOx] polyhedra (x = 7 and 9) which share their O atoms with TeO3 pyramidal units. These main anionic polyhedra are responsible for establishing the two types of tunnel required for the stereochemical activity of the lone pairs of the Pb2+ and Te4+ cations

    Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca2+ ions in oxidative processes

    No full text
    The present study was designed for further evaluation of the biochemical mechanism of hepatic mitochondrial dysfunction under oxidative damages induced by organic hydroperoxide, tert-butyl hydroperoxide (tBHP), for estimation of the molecular targets impaired during oxidative stress, and for investigation of the role of Ca2+ ions in mitochondrial oxidative reactions and of the protective effect of melatonin during mitochondrial peroxidative damage. Main methods: Mitochondria were isolated by differential centrifugation from the rat liver. The effects of tBHP exposure, EDTA, Ca2+ ions and melatonin on mitochondrial respiratory activity, mitochondrial enzyme activities and redox status were measured. Key findings: The present study provides evidence that tBHP (at low concentrations of 0.02-0.065 mM, in EDTA-free medium) induced uncoupling of the oxidation and phosphorylation processes and decreased the efficiency of the phosphorylation reaction. This effect depended on the respiratory substrate used. The presence of EDTA prevented oxidative impairment of mitochondrial respiration, but Ca2 4 ions in the medium enhanced oxidant-induced mitochondrial damage considerably. In the presence of 0.5 mM EDTA, tBHP (at high concentrations, 0.5-2 mM) considerably oxidized mitochondrial reduced glutathione, enhanced accu¬mulation of membrane lipid peroxidation products and mixed protein-glutathione disulfides and led to an inhibition of oxoglutarate dehydrogenase and succinate dehydrogenase. Significance: Direct oxidative modification of enzymatic complexes of the respiratory chain and mitochondrial matrix, mitochondrial reduced glutathione depletion, protein glutathionylation, membrane lipid peroxidation and Ca2+ overload are the main events of mitochondrial peroxidative damages. Experiments in vitro demonstrated that melatonin inhibited the mitochondrial peroxidative damage, preventing redox-balance changes and succinate dehydrogenase inactivation
    corecore