17 research outputs found

    Positional errors in species distribution modelling are not overcome by the coarser grains of analysis

    Get PDF
    The performance of species distribution models (SDMs) is known to be affected by analysis grain and positional error of species occurrences. Coarsening of the analysis grain has been suggested to compensate for positional errors. Nevertheless, this way of dealing with positional errors has never been thoroughly tested. With increasing use of fine-scale environmental data in SDMs, it is important to test this assumption. Models using fine-scale environmental data are more likely to be negatively affected by positional error as the inaccurate occurrences might easier end up in unsuitable environment. This can result in inappropriate conservation actions. Here, we examined the trade-offs between positional error and analysis grain and provide recommendations for best practice. We generated narrow niche virtual species using environmental variables derived from LiDAR point clouds at 5 x 5 m fine-scale. We simulated the positional error in the range of 5 m to 99 m and evaluated the effects of several spatial grains in the range of 5 m to 500 m. In total, we assessed 49 combinations of positional accuracy and analysis grain. We used three modelling techniques (MaxEnt, BRT and GLM) and evaluated their discrimination ability, niche overlap with virtual species and change in realized niche. We found that model performance decreased with increasing positional error in species occurrences and coarsening of the analysis grain. Most importantly, we showed that coarsening the analysis grain to compensate for positional error did not improve model performance. Our results reject coarsening of the analysis grain as a solution to address the negative effects of positional error on model performance. We recommend fitting models with the finest possible analysis grain and as close to the response grain as possible even when available species occurrences suffer from positional errors. If there are significant positional errors in species occurrences, users are unlikely to benefit from making additional efforts to obtain higher resolution environmental data unless they also minimize the positional errors of species occurrences. Our findings are also applicable to coarse analysis grain, especially for fragmented habitats, and for species with narrow niche breadth

    Distribution models of the Spanish argus and its food plant, the storksbill, suggest resilience to climate change

    Full text link
    Distribution models of the Spanish argus and its food plant, the storksbill, suggest resilience to climate change. Climate change is an important risk factor for the survival of butterflies and other species. In this study, we developed predictive models that show the potentially favourable areas for a lepidopteran endemic to the Iberian Peninsula, the Spanish argus (Aricia morronensis), and its larval food plants, the storksbill (genus Erodium). We used species distribution modelling software (MaxEnt) to perform the models in the present and in the future in two climatic scenarios based on climatic and topographic variables. The results show that climate change will not significantly affect A. morronensis distribution, and may even slightly favour its expansion. Some plants may undergo a small reduction in habitat favourability. However, it seems that the interaction between this butterfly and its food plants is unlikely to be significantly affected by climate changeLos modelos de distribución de la morena española y las plantas nutricias de sus larvas sugieren resistencia frente al cambio climático. El cambio climático representa un importante factor de riesgo para la supervivencia de las mariposas y de otras especies. En este estudio se han elaborado modelos predictivos que muestran las zonas potencialmente favorables para un lepidóptero endémico de la península ibérica, la morena española (Aricia morronensis), y las plantas nutricias de sus larvas, los alfilerillos o agujas de pastor (género Erodium). Se ha utilizado el programa informático MaxEnt para elaborar modelos de la distribución de las especies en el presente y en el futuro, bajo dos escenarios de condiciones climáticas, basadas en variables climáticas y topográficas. Los resultados muestran que el cambio climático no afectará significativamente a la distribución de A. morronensis, sino que incluso podría favorecer levemente su expansión. Algunas de las plantas podrían sufrir una pequeña reducción de la favorabilidad del hábitat. Sin embargo, la interacción entre la mariposa y sus plantas nutricias probablemente no se vea afectada significativamente por el cambio climátic

    The influence of road networks on brown bear spatial distribution and habitat suitability in a human-modified landscape

    Get PDF
    Roads are human infrastructure that heavily affect wildlife, often with marked impacts on carnivores, including brown bears Ursus arctos. Here, we assessed the potential impact of road networks on the distribution of brown bears in the small, isolated and endangered Cantabrian population of north-western Spain. To ascertain whether local road networks affect brown bear spatial distribution, we first assessed potential influences on the distance of bear locations to roads using candidate models which included topographic variables, landcover types, bear age and reproductive status, traffic volume and road visibility. Then, we built two sets of habitat suitability models, both with and without roads, to discern the possible loss of habitat suitability caused by roads. The mean distance of bear locations to the nearest road was 968 804 m and the closest road was a low traffic road in 72.5% of cases. Candidate models showed little influence of our variables on bear distance to the nearest road, with the exception of elevation. Habitat suitability models revealed that road networks in our study area seem to have almost no effect on brown bear habitat suitability, except for females with yearlings during the denning season. However, this result may also be a consequence of the fact that only a small proportion (16.5%) of the cells classified as suitable bear habitats were crossed by roads, that is, most of the roads are primarily located in unsuitable bear habitats in the Cantabrian Mountains. Compared to previous studies conducted in other populations, mainly North American ones, our findings might suggest a different response of Eurasian brown bears to roads due to a longer bear-human coexistence in Europe versus North America. However, the indirect approach used in our study does not exclude other detrimental effects, for example, road mortality, increased stress and movement pattern disruption, only detectable by more direct approaches such as telemetry

    The influence of road networks on brown bear spatial distribution and habitat suitability in a human-modified landscape

    Get PDF
    Roads are human infrastructure that heavily affect wildlife, often with marked impacts on carnivores, including brown bears Ursus arctos. Here, we assessed the potential impact of road networks on the distribution of brown bears in the small, isolated and endangered Cantabrian population of north-western Spain. To ascertain whether local road networks affect brown bear spatial distribution, we first assessed potential influences on the distance of bear locations to roads using candidate models which included topographic variables, landcover types, bear age and reproductive status, traffic volume and road visibility. Then, we built two sets of habitat suitability models, both with and without roads, to discern the possible loss of habitat suitability caused by roads. The mean distance of bear locations to the nearest road was 968 ± 804 m and the closest road was a low traffic road in 72.5% of cases. Candidate models showed little influence of our variables on bear distance to the nearest road, with the exception of elevation. Habitat suitability models revealed that road networks in our study area seem to have almost no effect on brown bear habitat suitability, except for females with yearlings during the denning season. However, this result may also be a consequence of the fact that only a small proportion (16.5%) of the cells classified as suitable bear habitats were crossed by roads, that is, most of the roads are primarily located in unsuitable bear habitats in the Cantabrian Mountains. Compared to previous studies conducted in other populations, mainly North American ones, our findings might suggest a different response of Eurasian brown bears to roads due to a longer bear-human coexistence in Europe versus North America. However, the indirect approach used in our study does not exclude other detrimental effects, for example, road mortality, increased stress and movement pattern disruption, only detectable by more direct approaches such as telemetry.During this research, EG-B was financially supported by a FPU grant (FPU15-03429) from the Spanish Ministry of Science, Innovation and Universities. VP, EG-B, AMG and HRV were financially supported by the I + D + I Project PID2020-114181GB-I00 financed by the Spanish Ministry of Science and Innovation, the Agencia Estatal de Investigación (AEI) and the Fondo Europeo de Desarrollo Regional (FEDER, EU). AMG was supported by the Predoctoral Fellowship PRE2018-086102. AZA was financially supported by a Margarita Salas contract financed by the European Union-NextGenerationEU, Ministerio de Universidades y Plan de Recuperación, Transformación y Resiliencia, through the call of the Universidad de Oviedo (Asturias).Peer reviewe

    Brown bear behaviour in human-modified landscapes: The case of the endangered Cantabrian population, NW Spain

    Get PDF
    Large carnivores are recolonizing parts of their historical range in Europe, a heavily modified human landscape. This calls for an improvement of our knowledge on how large carnivores manage to coexist with humans, and on the effects that human activity has on large carnivore behaviour, especially in areas where carnivore populations are still endangered. Brown bears Ursus arctos have been shown to be sensitive to the presence of people and their activities. Thus, bear conservation and management should take into account potential behavioural alterations related to living in human-modified landscapes. We studied the behaviour of brown bears in the Cantabrian Mountains, NW Spain, where an endangered population thrives in a human-modified landscape. We analysed bear observations video-recorded over a 10-year period to try to identify human and landscape elements that could influence bear behaviour. Neither the occurrence nor the duration of vigilance behaviour in Cantabrian bears seemed to be influenced by the proximity of human infrastructures and activity. Our findings suggest that the general pattern of human avoidance by bears is adapted to the human-modified landscape they inhabit. Bears generally avoid people, but close presence of human infrastructures or activity did not seem to trigger an increased bear behavioural response. Coexistence between large carnivores and humans in human-modified landscapes is possible, even when human encroachment is high, provided that carnivores are not heavily persecuted and direct interactions are avoided. Further research should also document the potential existence of other responses to human presence and activity, e.g., hunting, traffic noise, and measuring stress levels with physiological indicators.This research was financially supported by the IBA (International Association for Bear Research and Management) grant project IBA-RG_16_2016 ‘Brown bear behaviour in human-dominated landscapes: the effect of human density and ecotourism’. During this research, G.B. was financially supported by a collaboration contract with the MUSE – Museo delle Scienze of Trento (Italy), J.M-P. was supported by the ARAID foundation and V.P., A.O. and R.G.G. were also financially supported by the Excellence Project CGL2017-82782-P financed by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO), the Agencia Estatal de Investigación (AEI) and the Fondo Europeo de Desarrollo Regional (FEDER, EU)

    Bears in Human-Modified Landscapes: The Case Studies of the Cantabrian, Apennine, and Pindos Mountains

    Get PDF
    Edited by Vincenzo Penteriani and Mario Melletti.-- Part III - Human–Bear Coexistence.-- This material has been published in "Bears of the World. Ecology, Conservation and Management" by / edited by Vincenzo Penteriani and Mario Melletti / Cambridge University Press. This version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.Brown bears Ursus arctos were historically persecuted and almost eradicated from southern Europe in the twentieth century as a result of hunting and direct persecution. The effects of human-induced mortality were exacerbated by other threats, such as habitat loss and fragmentation, due to the expansion of human populations. As a result, nowadays there are only small fragmented populations of bears in southern Europe. Brown bears in the Cantabrian (north-western Spain), Apennine (central Italy), and Pindos (north-western Greece) mountains represent three examples of small and threatened bear populations in human-modified landscapes. Most of their range is characterized by high human densities, widespread agricultural activities, livestock raising and urban development, connected by dense networks of transport infrastructures. This has resulted in a reduction of continuous habitat suitable for the species. Here, we summarize the past and present histories and fates of these three populations as examples on how the coexistence of bears and people in human-modified landscapes can take different turns depending on human attitudes

    Human–Bear Conflicts at the Beginning of the Twenty-First Century: Patterns, Determinants, and Mitigation Measures

    Get PDF
    Edited by Vincenzo Penteriani and Mario Melletti.-- Part III - Human–Bear Coexistence.-- This material has been published in "Bears of the World. Ecology, Conservation and Management" by / edited by Vincenzo Penteriani and Mario Melletti / Cambridge University Press. This version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.Conflicts between humans and bears have occurred since prehistory. Through time, the catalogue of human–bear conflicts (HBC) has been changing depending on the values and needs of human societies and their interactions with bears. Even today, conflict situations vary among the eight species of bears and geographically across these species’ ranges. This results in a broad range of interactions between bears and humans that may be considered as conflicts, including: (1) predation of domestic or semiwild animals, including bees, hunting dogs, and pet animals; (2) damage due to foraging on cultivated berries, fruits, agricultural products, and the tree bark in forest plantations; (3) economic loss due to destruction of beehives, fences, silos, houses, and other human property; (4) bear attacks on humans causing mild or fatal trauma; (5) bluff charges, bear intrusions into residential areas; and (6) vehicle collisions with bears and traffic accidents. In this chapter we aim to outline the principal types of HBC and geographical differences in the occurrence of conflicts and the coexistence between people and bears

    Rubbing behavior of European brown bears: factors affecting rub tree selectivity and density

    Get PDF
    Scent-mediated communication is considered the principal communication channel in many mammal species. Compared with visual and vocal communication, odors persist for a longer time, enabling individuals to interact without being in the same place at the same time. The brown bear (Ursus arctos), like other mammals, carries out chemical communication, for example, by means of scents deposited on marking (or rub) trees. In this study, we assessed rub tree selectivity of the brown bear in the predominantly deciduous forests of the Cantabrian Mountains (NW Spain). We first compared the characteristics of 101 brown bear rub trees with 263 control trees. We then analyzed the potential factors affecting the density of rub trees along 35 survey routes along footpaths. We hypothesized that: (1) bears would select particular trees, or tree species, with characteristics that make them more conspicuous; and (2) that bears would select trees located in areas with the highest presence of conspecifics, depending on the population density or the position of the trees within the species’ range. We used linear models and generalized additive models to test these hypotheses. Our results showed that brown bears generally selected more conspicuous trees with a preference for birches (Betula spp.). This choice may facilitate the marking and/ or detection of chemical signals and, therefore, the effectiveness of intraspecific communication. Conversely, the abundance of rub trees along footpaths did not seem to depend on the density of bear observations or their relative position within the population center or its border. Our results suggest that Cantabrian brown bears select trees based on their individual characteristics and their location, with no influence of characteristics of the bear population itself. Our findings can be used to locate target trees that could help in population monitoring

    Endangered populations

    Get PDF
    The survival of an increasing number of species is threatened by climate change: 20%–30% of plants and animals seem to be at risk of range shift or extinction if global warming reaches levels projected to occur by the end of this century. Plant range shifts may determine whether animal species that rely on plant availability for food and shelter will be affected by new patterns of plant occupancy and availability. Brown bears in temperate forested habitats mostly forage on plants and it may be expected that climate change will affect the viability of the endangered populations of southern Europe. Here, we assess the potential impact of climate change on seven plants that represent the main food resources and shelter for the endangered population of brown bears in the Cantabrian Mountains (Spain). Our simulations suggest that the geographic range of these plants might be altered under future climate warming, with most bear resources reducing their range. As a consequence, this brown bear population is expected to decline drastically in the next 50 years. Range shifts of brown bear are also expected to displace individuals from mountainous areas towards more humanized ones, where we can expect an increase in conflicts and bear mortality rates. Additional negative effects might include: (a) a tendency to a more carnivorous diet, which would increase conflicts with cattle farmers; (b) limited fat storage before hibernation due to the reduction of oak forests; (c) increased intraspecific competition with other acorn consumers, that is, wild ungulates and free-ranging livestock; and (d) larger displacements between seasons to find main trophic resources. The magnitude of the changes projected by our models emphasizes that conservation practices focused only on bears may not be appropriate and thus we need more dynamic conservation planning aimed at reducing the impact of climate change in forested landscapes.Spanish Ministry of of Science, Innovation and Universities, the Agencia Estatal de Investigación (AEI) and the Fondo Europeo de Desarrollo Regional (FEDER, EU). Grant Number: Excellence Project CGL2017-8278
    corecore