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The survival of an increasing number of species is threatened by climate change: 20–30% of 24 

plants and animals seem to be at risk of range shift or extinction if global warming reaches 25 

levels projected to occur by the end of this century. Plant range shifts may determine whether 26 

animal species that rely on plant availability for food and shelter will be affected by new 27 

patterns of plant occupancy and availability. Brown bears in temperate forested habitats mostly 28 

forage on plants and it may be expected that climate change will affect the viability of the 29 

endangered populations of southern Europe. Here, we assessed the potential impact of climate 30 

change on seven plants that represent main food resources and shelter for the endangered 31 

population of brown bears in the Cantabrian Mountains (Spain). Our simulations suggest that 32 

the geographic range of these plants might be altered under future climate warming, with most 33 

bear resources reducing their range. As a consequence, this brown bear population is expected 34 

to decline drastically in the next fifty years. Range shifts of brown bear are also expected to 35 

displace individuals from mountainous areas towards more humanised ones, where we can 36 

expect an increase in conflicts and bear mortality rates. Additional negative effects might 37 

include: (a) a tendency to a more carnivorous diet, which would increase conflicts with cattle 38 

farmers; (b) limited fat storage before hibernation due to the reduction of oak forests; (c) 39 

increased intraspecific competition with other acorn consumers, i.e. wild ungulates and free-40 

ranging livestock; and (d) larger displacements between seasons to find main trophic resources. 41 

The magnitude of the changes projected by our models emphasizes that conservation practices 42 

focused only on bears may not be appropriate and thus we need more dynamic conservation 43 

planning aimed at reducing the impact of climate change in forested landscapes.  44 
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1 | INTRODUCTION 45 

The survival of an increasing number of species is threatened by climate change, yet 46 

20–30% of plant and animal species evaluated in climate change studies seems to be at 47 

risk of range shift or extinction if global warming reaches levels projected to occur by 48 

the end of this century (Brook et al., 2008; Walther, 2010; Intergovernmental Panel on 49 

Climate Change, 2014; Lenoir & Svenning, 2015). Indeed, climate change has already 50 

contributed to manifest changes in the geographic distribution and abundance of wild 51 

plants and animals over the past several decades (e.g. Root et al., 2003; Parmesan, 52 

2006; Monzón et al., 2011; Bellard et al., 2012; Lenoir & Svenning, 2015).  53 

Predicting the response of plants and animals to climate change has become an 54 

extremely active field of research, as predictions (a) play a crucial role in alerting 55 

researchers and decision makers to potential future risks and (b) can support the 56 

development of proactive strategies to reduce climate change impacts on biodiversity 57 

(Bellard et al., 2012). Some of the most vulnerable organisms to the alterations 58 

produced by climate change (e.g. warming temperatures and decreasing precipitation 59 

during the growing season; IPCC, 2013) are plants, given their limited ability to 60 

physically follow suitable environmental conditions (Parmesan, 2006). One of the most 61 

noticeable responses of plants to climatic changes is a shift in their geographic ranges 62 

(Malanson & Alftine, 2015). In particular, forests in temperate regions will be 63 

increasingly exposed to drought in the 21
st
 century (Müller-Haubold et al., 2013), which 64 

may accelerate rates of tree decline and mortality in Europe (Bréda et al., 2006; Müller-65 

Haubold et al., 2013). Plant range shifts may determine whether those animal species 66 

that rely on plant availability for both food and shelter will be affected by new patterns 67 

of plant occupancy/abundance (Nielsen et al., 2010; Shen et al., 2015; Simons-Legaard 68 

et al., 2016; Zang et al., 2017; Cianfrani et al., 2018) and/or by plant population 69 
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declines or extinction cascades via bottom-up effects (Roberts et al., 2014). In the case 70 

of small, isolated and/or endangered animal populations, the effects of climate change 71 

on their trophic resources may considerably override conservation and management 72 

efforts performed at other levels, e.g. reduction of human-wildlife conflicts, threat of 73 

anthropogenic footprints and activities. 74 

Brown bears (Ursus arctos) dedicate considerable effort to foraging on plants, 75 

particularly in temperate forested habitats (Bojarska & Selva, 2012), with bears in 76 

south-western Europe being among the most vegetarian of the European populations 77 

(Bojarska & Selva, 2012). Accordingly, bears in the Cantabrian Mountains (NW Spain) 78 

show high proportions of plant matter in their diet (Naves et al., 2006): (a) graminoids 79 

and forbs dominate their diet in spring; (b) foods such as fleshy fruits (especially 80 

blueberries Vaccinium myrtillus) become more important in the summer; and (3) during 81 

the early-autumn hyperphagic period (i.e. the period when bears spend most of their 82 

active time foraging to store fat, which is essential for successful hibernation and cub 83 

production; Farley and Robbins 1995, Fernández-Gil 2013) and winter, brown bears 84 

rely predominantly on hard mast, mainly acorns (Naves et al., 2006). Above all, acorns 85 

and blueberry represent essential food items for Cantabrian brown bears and, thus, oak 86 

forests and formations of clumped shrubs of blueberries are critical foraging habitats for 87 

this bear population (Naves et al., 2006; Rodríguez et al., 2007). Few studies have 88 

focused directly on potential linkages between climate change and bear trophic plant 89 

resources (Butler, 2012; Roberts et al., 2014), but some evidence exists that in the small 90 

and isolated brown bear population of Cantabrian Mountains (Rodríguez et al., 2007): 91 

(a) changes in bear diet and land use in relation to changing climate conditions have 92 

already occurred in the last 30 years; and (b) a trend towards increased local 93 

temperatures over the last few decades has been observed. Moreover, climate change 94 
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impacts on vegetation have recently been reported in other areas of Northern Spain, 95 

where several plant species have shown noticeable changes in the phenology of leaf 96 

unfolding, flowering, fruiting and leaf fall (Peñuelas et al., 2002).  97 

As temperature and snow conditions are among the most important factors 98 

affecting the feeding ecology of brown bears (Bojarska & Selva, 2012), it may be 99 

expected that climate change will affect brown bear food habits, for example, through 100 

changes in food availability and foraging behaviour as a result of alterations in plant 101 

distribution and phenology. Changes in the timing and intensity of fruiting and ripening 102 

of fruit and mast, as well as declines in the availability of high-quality fruits, such as 103 

Vaccinium sp., may have important consequences for brown bear population dynamics 104 

(Rodríguez et al., 2007). Consequently, because climate change may increase the 105 

extinction risk of endangered species already threatened by their small populations or 106 

limited geographic range, a major challenge in conservation planning for small 107 

populations of endangered bears is to incorporate climate change impacts into species 108 

conservation strategies (Li et al., 2015; Shen et al., 2015). 109 

The aim of this study is to conduct a comprehensive assessment of the potential 110 

impact of climate change on the future distribution of the brown bear population in the 111 

Cantabrian Mountains. Here, based on a long-term field survey on bear distribution and 112 

the latest climate projections, we applied both abiotic (i.e., climatic and geographic) and 113 

biotic (i.e., fruits and acorns distribution) variables to bioclimatic models in order to: (1) 114 

forecast the effect of potential changes in the spatial distribution of main bear food 115 

resources and shelter on the Cantabrian bear population in this century. With this aim, 116 

we evaluated two climate change scenarios (moderate and pessimistic) for 2050 and 117 

2070 under different emissions pathways; and (2) evaluate the implication of these 118 

changes to the distribution of this small and isolated bear population. 119 



6 
 

2 | METHODS 120 

2.1 | Study area 121 

Our model projections took into account most of the Cantabrian range currently 122 

occupied by brown bears (Asturias, León and Palencia provinces, NW Spain), which is 123 

characterized by an Atlantic climate, at the southern distribution limit of temperate 124 

deciduous forests in Europe, with mild winters and rainy summers (Pato & Obeso, 125 

2012; Roces-Díaz et al., 2014). The Cantabrian Mountains are characterized by an 126 

oceanic and relatively warm climate, with mean precipitation exceeding 800 mm year
-1

 127 

and reaching more than 2000 mm year
-1

 at the highest elevations. Maximum elevation is 128 

2648 m a.s.l. and average elevation is around 1100 m (Naves et al., 2003; Martínez 129 

Cano et al., 2016). Woodlands mainly consist of deciduous forests of sessile oak 130 

(Quercus petraea), beech (Fagus sylvatica) and chestnut (Castanea sativa), with 131 

bilberry dominating the understory (Pato & Obeso, 2012). This area also represents the 132 

southern limit of the distribution of beeches, sessile oaks, pedunculate oak (Q. robur) 133 

and European white birch (Betula pubescens) (Roces-Díaz et al., 2014). 134 

The plants investigated include seven species that not only are important in the 135 

diet of Cantabrian brown bears (Naves et al., 2006; Rodríguez et al., 2007; Fernández-136 

Gil, 2013b), i.e. blueberries, beeches, chestnuts, pedunculate oaks, Pyrenean oaks (Q. 137 

pyrenaica), sessile oaks and Scots pines (Pinus sylvestris), but also provide important 138 

shelter for the species (Mateo-Sánchez et al., 2014, 2016; Zarzo-Arias et al., 2019).  139 
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2.2 | Occurrence data collection 140 

2.2.1 | Brown bear 141 

The locations of brown bears were obtained from: (1) direct bear observations that were 142 

georeferenced by personnel of the Principado de Asturias and Junta de Castilla y León, 143 

primarily the Patrulla Oso, i.e. the Bear Patrol, of the Principado de Asturias and the 144 

Junta de Castilla y León, as well as all the other guards of both regional governments, 145 

by the Asturian Foundation for the Conservation of Wildlife (FAPAS, Fondo para la 146 

Protección de los Animales Salvajes), the FOA (Fundación Oso de Asturias) and the 147 

Brown Bear Foundation (FOP, Fundación Oso Pardo); and (2) personal georeferenced 148 

observations of the authors (Zarzo-Arias et al., 2018). The long-term monitoring of the 149 

Cantabrian population, which started between the end of the 1980s and the beginning of 150 

the 1990s, is essentially based on yearly direct sightings and the location of indirect 151 

signs of presence, i.e. footprints, fur and scats, records of damage caused by bears to 152 

livestock, beehives, crops, human activities and infrastructures, as well as camera traps 153 

that were randomly located by the FAPAS and Bear Team during the last twenty years, 154 

mainly in forested areas where bears are less visible (FAPAS/FIEP, 2017). Viewing 155 

points used by rangers and ourselves are evenly distributed over the entire bear range in 156 

the study area. Thus, locations were both the result of yearly systematic observations 157 

and random observations, which were evenly distributed throughout the seasons. For 158 

Castilla y León (from 1985 to 2017) it was possible to collect 3,130 bear locations, 159 

whereas for Asturias (from 1995 to 2016) 5,654 bear locations were available (n = 160 

8,784 total brown bear locations; Supplemental File 1A). Moreover, following brown 161 

bear habitat modelling by Mateo-Sánchez et al. (2016) 20,000 random pseudoabsence 162 

points were drawn inside the limits of the study area (Mateo-Sánchez et al., 2013). 163 

Indeed, presence–absence models tend to perform better than presence-only models and, 164 
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for this reason, artificial absence data (usually called pseudo-absences or background 165 

data) are usually created (Barbet-Massin et al., 2012). 166 

2.2.2 | Woody plants 167 

We estimated foraging resources from the combination of those plant species (trees and 168 

shrubs) which sequentially provide a food supply for brown bears throughout the 169 

different seasons. Specifically, we predict habitat changes for 7 species considered to be 170 

key brown bear food resources in the Cantabrian Mountains. Information on species 171 

occurrence was drawn from the Third Spanish National Forest Inventory, SNFI3 172 

(DGCN, 2001) (Supplemental File 1B). Few other species (e.g. Malus, Prunus and 173 

Ramnus spp.) can be important food resource seasonally (Naves et al., 2006), but it was 174 

impossible to forecast their evolution under climate change scenarios because of the 175 

lack of detailed information on their spatial distribution. The plots of the SNFI3 were 176 

surveyed at two different times, i.e. once in 1998 (province of Asturias) and then in 177 

2002-2003 (provinces of Léon and Palencia), and established at the intersections of a 1 178 

× 1 km grid, comprising four concentric sub-plots of 5, 10, 15 and 25 m radii, with a 179 

minimum diameter at breast height threshold of 75, 125, 225 and 425 mm, respectively. 180 

We defined presence as the occurrence of one or more live beech trees in any one of the 181 

subplots. A total of 8,185 plots falling within the study area with data on the 182 

presence/absence and prevalence of analysed species were available for analysis (Table 183 

1). 184 

 185 

 186 

 187 
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TABLE 1. Plant species considered as possible predictors for the distribution models. 188 

Prevalence = presence/total. Sites surveyed = 8185. 189 

Species Presences Absences Prevalence 

Blueberry 334 7,851 0.0408 

Beech 950 7,235 0.1161 

Chestnut 1,426 6,759 0.1742 

Pedunculate oak 1,872 6,313 0.2287 

Pyrenean oak 1,680 6,505 0.2053 

Sessile oak 491 7,694 0.0600 

Scots pine 842 7,343 0.1029 

 190 

2.3 | Spatial predictor variables 191 

A priori, we identified 19 climate, 13 soil, 13 topography/radiative and 7 species 192 

distribution model variables for the tree species analysed (in the case of the brown bear) 193 

which we hypothesized may influence the distribution of brown bear based on our 194 

knowledge of the species and the study area (Table 2). These variables have been 195 

previously used in different studies to assess species distribution models (Roberts et al., 196 

2014; Shirk et al., 2018). 197 

 198 

TABLE 2. Environmental variables considered as possible predictors for the 199 

distribution models during the 1960-1990 reference period and in 2050 and 2070 under 200 

two future emissions scenarios (RCP 4.5 and RCP 8.5). Variables are grouped by type, 201 

including climate, hydrography, population, roads, soil, topography/radiative and 202 

species distribution models. 203 

Variable Class Description Source Brown 

bear 

Vegetation 

species 

BIO_01 Climate Annual mean 

temperature 

WorldClim X X 

BIO_02  Mean diurnal 

temperature change 

(Mean of monthly 

(max temp - min 

temp)) 

WorldClim X X 
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BIO_03  Isothermality 

(BIO_02/BIO_07) 

(*100) 

WorldClim X X 

BIO_04  Temperature 

seasonality 

(standard deviation 

*100) 

WorldClim X X 

BIO_05  Max temperature of 

warmest month 

(
◦
C) 

WorldClim X X 

BIO_06  Min temperature of 

coldest month (
◦
C) 

WorldClim X X 

BIO_07  Temperature 

annual range 

(BIO_05-BIO_06) 

(
◦
C) 

WorldClim X X 

BIO_08  Mean temperature 

of wettest quarter 

(
◦
C) 

WorldClim X X 

BIO_09  Mean temperature 

of driest quarter 

(
◦
C) 

WorldClim X X 

BIO_10  Mean temperature 

of warmest quarter 

(
◦
C) 

WorldClim X X 

BIO_11  Mean temperature 

of coldest quarter 

(
◦
C) 

WorldClim X X 

BIO_12  Annual 

precipitation (mm) 

WorldClim X X 

BIO_13  Precipitation of 

wettest month 

(mm) 

WorldClim X X 

BIO_14  Precipitation of 

driest month (mm) 

WorldClim X X 

BIO_15  Precipitation 

seasonality 

(Coefficient of 

variation) 

WorldClim X X 

BIO_16  Precipitation of 

wettest quarter 

(mm) 

WorldClim X X 

BIO_17  Precipitation of 

driest quarter (mm) 

WorldClim X X 

BIO_18  Precipitation of 

warmest quarter 

(mm) 

WorldClim X X 

BIO_19  Precipitation of 

coldest quarter 

(mm) 

WorldClim X X 

BD Soil Bulk density of the 

fine earth fraction 

(< 2mm) (kg m
-3

) 

SoilGrids250m  X 

DB  Absolute deep to 

bed rock (cm) 

SoilGrids250m  X 

DB200  Depth to bedrock 

(R horizon) up to 

200 cm (cm) 

SoilGrids250m  X 

CEC  Cation exchange SoilGrids250m  X 
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capacity 

(cmol+/kg) 

CF  Coarse fragments 

(volumetric %) 

SoilGrids250m  X 

CLAY  Percentage of clay 

(weight %) 

SoilGrids250m  X 

Ph_H2O  Soil Ph in H2O 

solution 

SoilGrids250m  X 

Ph_KCl  Soil Ph in KCl 

solution 

SoilGrids250m  X 

SAND  Percentage of sand 

(weight %) 

SoilGrids250m  X 

SC  Soil organic carbon 

content (mG/ha) 

SoilGrids250m  X 

SC_FEF  Soil organic carbon 

content (fine earth 

fraction) (g) 

SoilGrids250m  X 

SILT  Percentage of silt 

(weight %) 

SoilGrids250m  X 

R  Probability 

occurrence of R 

horizon (%) 

SoilGrids250m  X 

ASP Topography/Radiative Aspect PNOA LiDAR X X 

CU  Curvature PNOA LiDAR X X 

PLC  Plan Curvature PNOA LiDAR X X 

PRC  Profile Curvature PNOA LiDAR X X 

SLP  Slope PNOA LiDAR X X 

TSI  Terrain Shape 

Index 

PNOA LiDAR X X 

WI  Wetness Index PNOA LiDAR X X 

EDH  Euclidean distance 

to nearest 

hydrographic 

network (m) 

PNOA LiDAR X X 

EDP  Euclidean distance 

to nearest 

population (m) 

INE X  

EDR  Euclidean distance 

to nearest roads 

network (m) 

PNOA LiDAR X  

SR_SS  Solar radiation in 

summer solstice 

(WH/m^2) 

PNOA LiDAR  X 

SR_EQ  Solar radiation in 

equinox (WH/m^2) 

PNOA LiDAR  X 

SR_WS  Solar radiation in 

winter solstice 

(WH/m^2) 

PNOA LiDAR  X 

SDM_BL SDM Species distribution 

model of Blueberry 

 X  

SDM_BE  Species distribution 

model of Beech 

 X  

SDM_CH  Species distribution 

model of Chestnut 

 X  

SDM_PO  Species distribution 

model of 

Pedunculate oak 

 X  

SDM_PYO  Species distribution 

model of Pyrenean 

 X  
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oak 

SDM_SO  Spatial distribution 

model of Sessile 

oak 

 X  

SDM_SP  Spatial distribution 

model of Scots pine 

 X  

TOTAL VARIABLES 36 43 

 204 

We obtained gridded data for all climate variables with a 30-arc second resolution 205 

(approximate 800 m) from WorldClim (Hijmans et al., 2005) generated for the 1960–206 

1990 historical period. The soil variables were compiled from the SoilGrids250m 207 

(Hengl et al., 2017) which provide a collection of updatable soil property and class 208 

maps of the world at a 250 m spatial resolution based on machine learning algorithms. 209 

Topography/Radiative variables were based on a 30m resolution digital elevation model 210 

(DEM) provided by the Spanish National Plan for Aerial Orthophotography (PNOA; 211 

Fomento, 2015). We used the System for Automated Geoscientific Analyses (SAGA; 212 

Conrad et al., 2015) Geographical Information System (GIS) software (version 3.0.0) to 213 

calculate each of the topography/radiative variables from the DEM. We resampled all 214 

climate, soil, and topography/radiative variable raster grids at 250m resolution by using 215 

the nearest neighbour method. Finally, we extracted the values of all variables at all 216 

sampled locations. 217 

2.4 | Species distribution modelling 218 

We fit species distribution models using the machine learning algorithm Random Forest 219 

(RF; Breiman, 2001). Random Forest is a broadly used classification and non-220 

parametric regression approach that consists of building an ensemble of decision trees 221 

(Gislason, P.O. Benediktsson, J.A. Sveinsson, 2006). The success of this technique is 222 

based on the use of numerous trees, developed with different independent variables that 223 

are randomly selected from the complete original set of features (e.g. Deschamps et al., 224 
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2012; Wang et al., 2016). Random Forest also provides a measure of the importance of 225 

input features through random permutation, which can be used for feature ranking or 226 

selection (Genuer et al., 2010; Immitzer et al., 2016). In machine learning, spurious data 227 

features must be removed before a model is generated (Hall, 1999). Thus, the variables 228 

that are potentially the most important are selected. For that purpose, WEKA open 229 

source software (Hall et al., 2009) used for fitting the RF algorithm, uses a wrapper 230 

methodology to select the subsample of variables since it usually produces the best 231 

results (Zhiwei & Xinghua, 2010). This methodology of feature selection process 232 

selects the subsample of variables using a learning algorithm as part of the evaluation 233 

function. The RF technique was applied several times since we consider a set of a 10-234 

fold cross-validation (i.e. models were fitting using 90% of the data for training and the 235 

remaining 10% for model evaluation). 236 

2.5 | Model assessment, projection and analysis for woody plants and bears 237 

We evaluated model performance for each method and replicate in several ways, 238 

including receiver operator curve (AUC), Matthews Correlation Coefficient (MCC), 239 

True Skill Statistic (TSS; Allouche et al., 2006), Cohen’s Kappa (Cohen, 1968), 240 

specificity, and sensitivity. Calculating Cohen’s Kappa required a binary model, which 241 

we created based on a threshold probability where sensitivity equalled specificity (i.e., 242 

we equally weighted errors of omission and commission). All modelling methods, as an 243 

output variable, report a probability of presence (PoP) for each species. To convert all 244 

other PoPs to a binary presence–absence output, a threshold PoP was selected for each 245 

species. To select a threshold for presence–absence delineation from the PoP data, the 246 

average of two methods was used: (1) the PoP that maximized the sum of sensitivity 247 

and specificity, and (2) the PoP that minimized the difference between the absolute 248 

values of sensitivity and specificity. 249 
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We projected the fitted models onto spatial projections at a 250 m resolution of 250 

the environmental variables reflecting two climate change scenarios, i.e. moderate and 251 

pessimistic (van Vuuren et al., 2011; IPCC, 2013; Harris et al., 2014; Dyderski et al., 252 

2017) for 2050 and 2070 under different emissions pathways. These scenarios are 253 

expressed by the representative concentration pathways (RCP), using values comparing 254 

the level of radiative forcing between the preindustrial era and 2100. The moderate 255 

scenario (RCP4.5) assumes: (a) climate policies limit greenhouse-related emissions and 256 

total radiative forcing is stabilized at 4.5Wm−2 in the year 2100 without ever exceeding 257 

that value in prior years (Thomson et al., 2011); and (b) 650 ppm CO2 and 1.0–2.6°C 258 

increase by 2100, and refers to scenario B1 of the IPCC AR4 guidelines. The 259 

pessimistic scenario (RCP8.5) assumes: (a) continued increases in greenhouse gases 260 

following recent trends, reaching a total radiative forcing of 8.5Wm−2 in the year 2100 261 

(Riahi et al., 2011); and (b) 1,350 ppm CO2 and 2.6–4.8°C increase by 2100, and refers 262 

to scenario A1F1 of the IPCC AR4 guidelines (van Vuuren et al., 2011; IPCC, 2013; 263 

Harris et al., 2014; Dyderski et al., 2017). 264 

For the current and future scenarios, we used FRAGSTATS 4.2 (McGarigal et 265 

al., 2016) to quantify the area of habitat and degree of habitat fragmentation based on 266 

the binary model. We quantified suitable habitat area in three ways, including total area 267 

(TA) in the study area, mean patch area (MPA), and largest patch index (LPI; the 268 

percentage of the landscape encompassed by the largest patch). Also, we quantified 269 

fragmentation using the aggregation index (AI), which equals 0 when suitable habitat is 270 

maximally disaggregated into single grid cell patches disconnected from all other 271 

patches and increases to 1 as suitable habitat is increasingly aggregated into a single, 272 

compact patch. We also quantified the degree of change for each future scenario relative 273 

to the 1960–1990 30-year normal, classifying habitat as gained, maintained or lost. 274 
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3 | RESULTS 275 

Of the 28,874 sites surveyed, brown bears were present at 8,874 sites, resulting in a 276 

prevalence of 0.3073 (Table 1). As a result of the feature selection process, 19 of the 36 277 

variables (Table 2) were selected as the optimal subset size by the Random Forest 278 

method (Table 3). Model performance was excellent (Table 4): AUC = 0.979, MCC = 279 

0.828, TSS = 0.820, Kappa = 0.828. The sensitivity was 0.866 and specificity was 280 

0.954. The functional form of the marginal response curve for brown bear with a 281 

relative importance of variables of >75%, including mean diurnal range (BIO_02), 282 

temperature seasonality (BIO_04), temperature annual range (BIO_07), mean 283 

temperature of warmest quarter (BIO_10), annual precipitation (BIO_12) and Euclidean 284 

distance to nearest hydrographic network (EDH), are shown in Figure 1. 285 

 286 

FIGURE 1. Marginal response curves for the six variables included in the brown bear 287 

species distribution model and with a relative importance of variables >75% The 288 

normalized probability of presence (PoP) is shown as a function of each variable while 289 

holding all other variables at their median values at presence locations. The mean (black 290 

line) and standard deviation (grey area) of the probability of presence are shown. 291 

 292 

 293 

 294 

 295 

 296 
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Brown bear 
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TABLE 3. Relative importance values calculated for environmental variables in species distribution models generated by the tested machine 298 

learning method (RF: random forest). 299 

Variable Class Brown bear Blueberry Beech Chestnut Pedunculate oak Pyrenean oak Sessile oak Scots pine 

BIO_01 Climate    100.00 100.00  100.00 88.89 

BIO_02  100.00 100.00 95.24 100.00 90.48 100.00   

BIO_03   70.59 100.00 94.74 90.48 95.45  100.00 

BIO_04  92.86  76.19  71.43 81.82  83.33 

BIO_05       86.36  77.78 

BIO_06      71.43    

BIO_07  85.71 82.35 76.19 78.95  72.73 66.67 72.22 

BIO_08      66.67    

BIO_09     73.68     

BIO_10  85.71    66.67    

BIO_11       68.18   

BIO_12  78.57  76.19 63.16 57.14    

BIO_13    66.67 57.89 47.62 54.55   

BIO_14    38.10 52.63 47.62 59.09  66.67 

BIO_15  28.57 47.06 23.81 31.58 33.33 50.00 44.44 33.33 

BIO_16      33.33 45.45  44.44 

BIO_17  50.00 58.82   28.57    

BIO_18       36.36   

BIO_19  35.71 41.18 42.86  23.81 27.27 38.89  

BD Soil    21.05 14.29 13.64  33.33 

DB     10.53 9.52 13.64 0.00 5.56 

DB200   5.88   4.76   38.89 

CEC      38.10 36.36 27.78 50.00 

CF    19.05 15.79 14.29 13.64  27.78 

CLAY   0.00 14.29  23.81   27.78 

Ph_H2O    42.86 26.32  27.27  38.89 

Ph_KCl   23.53 33.33  23.81  16.67 33.33 

SAND   0.00 0.00 5.26 14.29 13.64 5.56 0.00 
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SC   35.29  31.58  31.82   

SC_FEF      0.00 4.55  11.11 

SILT    0.00 5.26 14.29   16.67 

R     5.26 9.52 18.18  16.67 

ASP Terrain 57.14     13.64   

CU    19.05      

PLC  50.00  14.29      

PRC     0.00 4.76    

SLP   5.88 0.00  4.76 0.00  5.56 

TSI          

WI  42.86   5.26 4.76 4.55  5.56 

EDH  78.57   36.84  36.36  55.56 

EDP  71.43        

EDR  71.43        

SR_SS    42.86      

SR_EQ   47.06 33.33 42.11 38.10    

SR_WS     36.84  40.91   

SDM_BL SDM         

SDM_BE  0.00        

SDM_CH          

SDM_PO  0.00        

SDM_PYO  7.14        

SDM_SO  0.00        

SDM_SP  0.00        

          

TOTAL  19 13 20 22 29 26 8 23 
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TABLE 4. Model fit metrics for species distribution modelling (SDM) using RF 300 

applied to occurrence data within the Cantabrian Mountain range in North Spain. Model 301 

fit metrics included area under the receiver operator curve (AUC), Matthews correlation 302 

coefficient (MCC), true skill statistic (TSS), Cohen’s kappa, sensitivity and specificity. 303 

Model fit was assessed on the training data used to fit the model as well as the withheld 304 

test data used for model evaluation. All the values represent the mean 10-fold cross-305 

validation. 306 

Model Data 

set 

AUC MCC TSS Kappa Sensiti

vity 

Specifi

city 

PoP 

Brown Bear Test 0.979 0.828 0.820 0.828 0.866 0.954 0.40 

Blueberry Test 0.935 0.281 0.524 0.230 0.559 0.965 0.20 

Beech Test 0.969 0.709 0.750 0.707 0.790 0.960 0.25 

Chestnut Test 0.885 0.441 0.541 0.423 0.658 0.883 0.35 

Pedunculate oak Test 0.884 0.482 0.537 0.475 0.673 0.864 0.40 

Pyrenean oak Test 0.877 0.491 0.601 0.470 0.732 0.869 0.35 

Sessile oak Test 0.921 0.329 0.525 0.290 0.573 0.952 0.30 

Scots pine Test 0.951 0.625 0.747 0.611 0.798 0.949 0.20 

 307 

In the case of the seven plants species, prevalence at the 8,185 sites surveyed 308 

varied from 0.0408 (Blueberry) to 0.2287 (Pedunculate oak). As a result of the feature 309 

selection process, from 8 (Sessile oak) to 29 (Pedunculate oak) of the 43 variables 310 

(Table 2) were selected as the optimal subset size by the RF method (Table 3). The 311 

achieved accuracies of the classification models for the seven plants species were good 312 

(Table 4): AUC varied from 0.877 (Pedunculate oak) to 0.969 (Beech), MCC varied 313 

from 0.281 (Blueberry) to 0.709 (Beech), TSS varied from 0.524 (Blueberry) to 0.750 314 

(Beech), sensitivity varied from 0.559 (Blueberry) to 0.790 (Beech), and specificity 315 

varied from 0.864 (Pedunculate oak) to 0.965 (Beech). 316 

The functional form of the marginal response curves varied among the plants species 317 

analysed (Supplemental File 2); where the climate variables were the most significant 318 

ones. 319 
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Beech forests in the Cantabrian Mountains appeared to be the most affected 320 

under the two scenarios (RPC 4.5 and 8.5, for both 2050 and 2070), as they were 321 

reduced by the half under the moderate scenario and almost disappeared under the 322 

pessimistic one (Table 5). The range of blueberries was also contracted to half its 323 

current distribution, whereas range contractions >50% were exhibited by pedunculate 324 

and sessile oaks. The latter almost disappeared under the pessimistic scenario for 2070 325 

(Table 5). Range extensions of chestnuts and Scots pines only slightly 326 

increased/decreased (Table 5). These vegetation shifts under future climate scenarios for 327 

2050 and 2070 are all reflected in the marked changes in distribution (mean latitude and 328 

altitude), total area and fragmentation (mean patch area, largest patch index and 329 

aggregation index) of the plant species distribution (Supplemental Files 2 and 3), such 330 

that under the most extreme future scenario (RCP 8.5) there is generally little overlap 331 

between current and future distributions (Supplemental File 3). 332 

As a consequence of the extensive range contractions of most of the forest cover 333 

and blueberries in the Cantabrian Mountains, the brown bear population appeared to 334 

drastically lose its geographic range in the future (Figure 2), which: (a) is reduced by 335 

approximately half under the moderate scenario, for both 2050 and 2070; and (b) 336 

showed a dramatic contraction under the pessimistic scenario, for both 2050 (24% of 337 

the current range only) and 2070 (12%; Table 5). In addition to the range reduction, the 338 

brown bear population also showed a range shift towards the north (Figure 2), which 339 

may be mostly explained by: (a) the range shift of chestnuts towards the north; (b) the 340 

range maintenance of the Pyrenean and pedunculate oaks mainly in the north; and (c) 341 

the disappearance of blueberry, beach and sessile oak from the current brown bear 342 

distribution range (Figure 2). 343 
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Under both RCP 4.5 and RCP 8.5, the lower and the higher emission scenarios 344 

respectively, latitudinal shifts and the aggregation index of the brown bear population 345 

only showed marginal changes (Figure 3). However, all the other parameters decreased 346 

considerably, including the total area (see also bear range contraction in Figure 2) and 347 

altitude occupied by bears, which decreased below 1000 m a.s.l. This predicted decrease 348 

in altitude supports the highlighted bear range shift towards the north (Figure 2), that is 349 

where altitudes decrease because the north of the study area is outside the bulk of the 350 

Cantabrian Mountains. 351 

 352 

FIGURE 2. Projected changes in the future range of: (a) seven plant species (blueberry 353 

Vaccinium myrtillus, beech Fagus sylvatica, chestnut Castanea sativa, pedunculate oak 354 

Quercus robur, Pyrenean oak Q. pyrenaica, sessile oak Q. petraea and Scots pine Pinus 355 

sylvestris) that represent an important food resource and/or shelter for the brown bear in 356 

the Cantabrian Mountains (NW Spain); and (b) the Cantabrian brown bear population. 357 

For each species the following are shown: (a) the current distribution models; (b) the 358 

distribution models for 2050 and 2070, under both future emissions scenarios (RCP 4.5 359 

and RCP 8.5); and (c) the range shifts in terms of gained (green), maintained (yellow) 360 

and lost (red) surface areas (grid cells) for 2070 only, under both RCP 4.5 and RCP 8.5. 361 

(The photos were downloaded from 123RF ROYALTY FREE STOCK PHOTOS, 362 

http://www.123rf.com; blueberry: ID16687172, sedneva; beech: ID9763793, Alfio 363 

Scisetti; chestnut: ID90445888, Alfio Scisetti; pedunculate oak: ID10696871, Ralf 364 

Neumann; Pyrenean oak: ID31492439, Israel Hervás; sessile oak: ID12474697, Israel 365 

Hervás; Scots pine: ID63105314, Juha Remes; brown bear: ID7250879, Eric Isselee). 366 
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 373 

 374 

At sites where brown bear were present, the distribution of the four climate 375 

variables shifts under the two future climate scenarios (RCP 4.5 and 8.5) for 2050 and 376 

2070 (Figure 4). The future projections reveal a large shift towards warmer summer 377 

temperatures (BIO_10). The future projections also reveal a shift towards less annual 378 

precipitation (BIO_12), although the magnitude is small compared to that of the 379 

temperature-related variables (Supplemental File 4). 380 
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FIGURE 3. Changes in the distribution (mean latitude and altitude), area (total area), 381 

fragmentation (mean patch area), largest patch index ( i.e. the percent of the bear 382 

population encompassed by the single largest patch) and aggregation index (a measure 383 

of fragmentation that varies from 0 to 100, with zero reflecting conditions where all 384 

occupied grid cells are maximally dispersed from each other across the landscape) of 385 

the brown bear population in the Cantabrian Mountains, under five scenarios: (1) the 386 

current reference period; (2) 2050 under the RCP 4.5 emissions scenario; (3) 2050 387 

under the RCP 8.5 emissions scenario; (4) 2070 under the RCP 4.5 emissions scenario; 388 

and (5) 2070 under the RCP 8.5 emissions scenario. 389 
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TABLE 5. Extension (km
2
 and %) of range contractions and expansions (+%) of the brown bear and the seven plant species used by bears as 376 

food and shelter in the Cantabrian Mountains under five scenarios: (1) the current reference period; (2) 2050 under the RCP 4.5 emissions 377 

scenario; (3) 2050 under the RCP 8.5 emissions scenario; (4) 2070 under the RCP 4.5 emissions scenario; and (5) 2070 under the RCP 8.5 378 

emissions scenario. 379 

 380 

 

Brown bear 

 

Blueberry  

 

Beech 

 

Chestnut  

 

Pedunculate oak  

 

Pyrenean oak  

 

Sessile oak  

 

Scots pine  

 

 

Km
2
 % Km

2
 % Km

2
 % Km

2
 % Km

2
 % Km

2
 % Km

2
 % Km

2
 % 

Scenario 

                Current 4476 

 

2621 

 

4861 

 

5676 

 

2754 

 

9231 

 

2177 

 

3662 

 2050 RCP 4.5 3105 69 1557 59 3202 66 6577 +16 788 29 9338 +1 641 29 3714 +1 

2050 RCP 8.5 1079 24 1325 51 302 6 5797 +2 908 33 9385 +2 218 10 4066 +11 

2070 RCP 4.5 2729 61 1580 60 2472 51 6855 +21 611 22 8963 97 481 22 3391 93 

2070 RCP 8.5 527 12 1090 42 225 5 5812 +2 708 26 8460 92 80 4 3013 82 

   381 
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FIGURE 4. Distribution of climate variables at sites where brown bears are present in 382 

the Cantabrian Mountains, under five scenarios: (1) the current reference period; (2) 383 

2050 under the RCP 4.5 emissions scenario; (3) 2050 under the RCP 8.5 emissions 384 

scenario; (4) 2070 under the RCP 4.5 emissions scenario; and (5) 2070 under the RCP 385 

8.5 emissions scenario. 386 

Brown bear 
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 387 

4 | DISCUSSION 388 

Our simulations suggest that the geographic range of the seven plant species used by 389 

brown bears as food and shelter in the Cantabrian Mountains might respond in different 390 

ways under future climate warming, with most bear resources reducing their range. As a 391 

consequence, the available brown bear range in the Cantabrian Mountains is expected to 392 

reduce (Figure 2) in the next fifty years, mostly due to the effect of climate change on 393 

vegetation range shifts. 394 

Current wilderness areas of the Cantabrian Mountains are largely located in 395 

mountainous regions, which are expected to experience some of the largest climatic 396 

changes (Root et al., 2003), with montane species being subject to increasing 397 

temperatures and changing precipitation regimes (Monzón et al., 2011). For example, 398 

among the recognised effects of global warming, we know that: (a) drought reduces 399 

blueberry growth, as well as fruit size and maturation (Bădescu et al., 2017), an effect 400 

that is expected to be stronger at the southern limit of its European geographic range, 401 

such as in northern Spain (Pato & Obeso, 2012); (b) beech forests are particularly 402 

affected by an increase in periods of drought in summer and heavy rains in autumn and 403 

spring, which cause oxygen depletion in the soil, as well as by their limited capability to 404 
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take advantage of the increasing atmospheric CO2 content (Rennenberg et al., 2004; 405 

Müller-Haubold et al., 2013; Latte et al., 2016). Indeed, the beech is more drought 406 

sensitive than other European broadleaved tree species, such as oaks (e.g. Quercus 407 

petraea and Q. robur) (Dulamsuren et al., 2017), which supports the extreme beech 408 

range contraction predicted by our model. Recent observations of long-term growth 409 

decline in beech forests at the southern edge of their distribution (Italy and northern 410 

Spain) have already been linked to drought effects associated with climate change 411 

(Müller-Haubold et al., 2013; Dulamsuren et al., 2017); and, as is widely recognized, 412 

(c) more severe climate change scenarios may also affect tree species otherwise 413 

relatively resistant, like pedunculate and sessile oaks (Doležal et al., 2010; Dyderski et 414 

al., 2017). In particular, sessile oak growth reduction is connected with water deficit, 415 

i.e. little growth in hot, dry conditions, especially for trees growing in an oceanic 416 

climate (Doležal et al., 2010; Mérian et al., 2014).  417 

Range shifts of brown bear are expected to displace individuals from wilder 418 

mountainous areas towards more humanised ones, where we can expect an increase in 419 

conflicts and bear mortality rates. Indeed, the distribution range of Pyrenean and 420 

pedunculate oaks is expected to shift largely towards the north of Asturias (Figure 2), 421 

closer to lowlands, where the density of people and human infrastructures is highest. 422 

Here, the high density of crops, livestock, human settlements and roads may increase 423 

rates of human-bear conflict and mortality. A similar increase in bear-human conflict 424 

has been suggested for grizzlies in North America due to the reduction of whitebark 425 

pine Pinus albicaulis forests as a result of climate change (Mattson et al., 2001; Schrag 426 

et al., 2008). Without these forests, whitebark pine seeds become unavailable as a food 427 

source which induces grizzly to move to lower elevations to find alternative food 428 

sources, where they are more likely to experience conflicts with humans. Such 429 
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anthropogenic causes of mortality, which have not been taken into account in our 430 

models, can be additive to bear range contraction and produce an even greater decline of 431 

the species during the 21
st
 century. Additionally, the projected reduction of Cantabrian 432 

plant species might also: (a) modify the currently mostly vegetarian diet of bears (Naves 433 

et al., 2006; Rodríguez et al., 2007; Fernández-Gil, 2013b), which may replace less 434 

available fruits and acorns with more meat (Bastille-Rousseau et al., 2017); and/or (b) 435 

increase the interest of bears in apiaries and crops. Both possibilities can increase the 436 

probability of local conflicts with humans and change the generally positive attitude that 437 

people currently have towards brown bears in the Cantabrian Mountains. 438 

Three additional negative effects on bears may be expected as a consequence of 439 

the vegetation changes in the Cantabrian Mountains. First, because acorns constitute the 440 

bulk of the autumn and winter diet for this population (Naves et al., 2006), a drastic 441 

reduction in oak forests may affect fat storage before den entry, which is essential for 442 

successful hibernation and cub production (Farley & Robbins, 1995b; Robbins et al., 443 

2012). Indeed, a decrease in acorn consumption may reduce protein intake from plant 444 

material, which might affect Cantabrian brown bears during hyperphagia (Rodríguez et 445 

al., 2007). Bear reproduction might be even more affected by this low protein intake 446 

under the predicted warming climate. Yet, under future climate change scenarios, winter 447 

temperature is expected to increase and, consequently, energy demands of hibernating 448 

mammals will increase because the energetic costs of torpor increase, i.e. less energy 449 

can be allocated to reproduction during warm winters (Humphries et al., 2002; Albrecht 450 

et al., 2017). Secondly, under such a scenario of low acorn availability, current rates of 451 

intraspecific competition with other acorn consumers, i.e. wild ungulates such as the 452 

wild boar Sus scrofa and free-ranging livestock, may increase (Naves et al., 2006; 453 

Rodríguez et al., 2007). Thirdly, because the distances between oaks and blueberry 454 
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bushes seem to be destined to increase due to both their range shift and contraction 455 

(Figure 2), bears might need to make larger displacements between seasons to find main 456 

trophic resources. For example, increased distances between the area inhabited by a 457 

typical summer food like blueberries and oak forests, where bears get most of their 458 

autumn food, may expose bears to greater risks than before (e.g. car collisions and 459 

increased energy consumption) because of the longer distances they need to cover 460 

during the hyperphagia period. Indeed, the distribution and availability of limited 461 

resources may be more spatially dispersed and, thus, may influence bear space use. 462 

When resources are not concentrated in space or time, individuals may require greater 463 

areas to gain the resources necessary to sustain their body size and successfully 464 

reproduce (Mangipane et al., 2018). 465 

Because human pressure (e.g. land use, fire) in human-modified landscapes is 466 

already stressing several mammal species, it may possibly enhance the negative 467 

influence that climate change will have (Maiorano et al., 2011). For example, livestock 468 

grazing pressure has already been observed to impact bear consumption of Vaccinium 469 

shrubs in the Cantabrian Mountains because of their reduced availability (Rodríguez et 470 

al., 2007; Fernández-Gil, 2013b). As a consequence, cattle numbers and/or periods of 471 

grazing should be reduced within the brown bear range in the Cantabrian Mountains, as 472 

already suggested by Naves et al. (2006), Rodríguez et al. (2007) and Fernández-Gil 473 

(2013). 474 

We consider it important to highlight here one limitation of our study. In our 475 

projections species distributions are only determined by environmental factors 476 

controlling their niche (e.g. climate, soil and topography/radiative), whereas tree plant 477 

distributions may also be influenced by biotic interactions among species such as 478 

competition, predation, amensalism and mutualism, further modulated by abiotic 479 
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disturbances like fires and forest management practices (Shirk et al., 2018). Phenotypic 480 

plasticity and local adaptation may also modify rates of tree species contraction and 481 

expansion (Valladares et al., 2014), but the magnitude of the projected range shift for 482 

some species might make relying on these natural mechanisms of resiliency alone 483 

insufficient. Evidently, our projections on the impact of climate change on the 484 

distribution and availability of bear food plant species cannot take into account 485 

potentially complex adaptive behavioural responses of bears, which are well-known 486 

habitat generalists (Roberts et al., 2014). The wide nutritional niche of brown bears 487 

might allow them to cope with the nutritional challenges associated with changes in 488 

available food resources due to climate change (Roberts et al., 2014; Coogan et al., 489 

2018). In spite of these caveats, our model predictions allow us to make inferences on 490 

possible general patterns of future plant range shifts and bear population dynamics 491 

under different climate scenarios. Yet, there is a strong need to develop forecasts of 492 

what could happen under different climate change scenarios given certain assumptions 493 

(e.g. Bond et al., 2014; Li et al., 2015) and, accepting the basic assumptions and 494 

limitations of predictive models, we regard our projections as a useful first step and 495 

plausible null model to rely on for future bear conservation, rather than assuming that 496 

the present distributions of brown bears and their resources will remain unchanged. 497 

The expected reduction and shift of brown bears and their feeding 498 

resources/habitats in the Cantabrian Mountains will profoundly impact the conservation 499 

effectiveness of the current protected areas. Nevertheless, climate change will likely 500 

reduce the distributions of bears in these reserves. It is thus necessary to upgrade the 501 

spatial distribution of protected areas to improve species protection under the processes 502 

engendered by climate change (Hannah et al., 2007). The integration of potential range 503 

shifts into conservation planning is a proactive way to confront the effect of climate 504 
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change on vegetation and, consequently, on the animal species linked to the affected 505 

plant species. Conservation plans that overlook potential range shifts have poor 506 

expected outcomes for most species (Bond et al., 2014; Li et al., 2015). Indeed, 507 

projecting future scenarios of forest shifts given climate change predictions for the 508 

region can help inform conservation planning to mitigate bear food and shelter range 509 

contractions. For example, plant assisted colonization, i.e. intentionally moving species 510 

to climatically suitable locations outside their current ranges (Iverson & McKenzie, 511 

2013), as well as assisted gene flow, are strategies being explored to maximize tree 512 

plant resistance and adaptation to a changing regional climate (Aitken et al., 2008; 513 

Iverson & McKenzie, 2013; Travis et al., 2013). For example, assisted gene flow might 514 

be used to introduce individuals with adaptive genotypes into populations that lack 515 

those traits (Aitken & Bemmels, 2016). Given that natural colonization is unlikely to 516 

occur within the projected range shift, assisted colonization into areas our study 517 

identified as suitable in the future may also be warranted (Vitt et al., 2010). Thus, our 518 

results provide a preview of the potential future distribution of shrubs and tree species 519 

suitable for brown bear food and shelter, providing lead-time to enact forward-looking 520 

strategies designed to conserve forest ecosystems within the study area. The magnitude 521 

of the forest changes projected by our models emphasizes that, to conserve the 522 

Cantabrian brown bear population, conservation practices only focused on bears may 523 

not be appropriate; rather, we also need more dynamic conservation planning aimed to 524 

reduce the impact of climate change in the forested landscapes of the Cantabrian 525 

Mountains. One strategy is to accept the future changes in species ranges and to focus 526 

on those areas into which these species will move (Monzón et al., 2011). Thus, together 527 

with conservation actions aimed at maintaining bears in their historical and current 528 

ranges, we encourage practices targeted at managing species range shifts and which 529 
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start to conserve and manage those areas potentially favourable to be inhabited by bears 530 

as a consequence of the modifications due to climate change. As we cannot force plant 531 

species to remain in a geographical space that no longer represents their evolved climate 532 

envelope, or animal species to persist where their main resources have disappeared, a 533 

pre-emptive strategy based on climate change shifts may be better aligned with reality. 534 

 535 
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SUPPLEMENTAL FILES 

SUPPLEMENTAL FILE 1. (A) The spatial distribution of the sampling effort for 

brown bear occurrence data (n = 8,784 locations), which covered the whole range of 

bear distribution in the Cantabrian Mountains. 

 

(B) The spatial distribution of plant species and brown bear locations. 
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SUPPLEMENTAL FILE 2. Marginal response curves for the variables included in the 

seven plant species distribution models and with a relative importance of variables 

>75%. The normalized probability of presence (PoP) is shown as a function of each 

variable while holding all other variables at their median values at presence locations. 

The mean (black line) and standard deviation (grey area) of the probability of presence 

are shown. 
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SUPPLEMENTAL FILE 3. Changes in the distribution (mean latitude and altitude), area (total area) and fragmentation (mean patch area; 

largest patch index, i.e. the percent of the study area occupied by the single largest patch; and aggregation index, a measure of fragmentation that 

varies from 0 to 100, with zero reflecting conditions where all suitable grid cells are maximally dispersed from each other across the landscape) 

of the habitat for the seven plant species used by brown bears as food and shelter in the Cantabrian Mountains, under five scenarios: (1) the 

current reference period; (2) 2050 under the RCP 4.5 emissions scenario; (3) 2050 under the RCP 8.5 emissions scenario; (4) 2070 under the 

RCP 4.5 emissions scenario; and (5) 2070 under the RCP 8.5 emissions scenario. 
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SUPPLEMENTAL FILE 4. Distribution of those variables that contributed more than 

75% to the model algorithm for the seven plant species in the Cantabrian Mountains, 

under five scenarios: (1) the current reference period; (2) 2050 under the RCP 4.5 

emissions scenario; (3) 2050 under the RCP 8.5 emissions scenario; (4) 2070 under the 

RCP 4.5 emissions scenario; and (5) 2070 under the RCP 8.5 emissions scenario. 
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