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Abstract
1.	 The performance of species distribution models (SDMs) is known to be af-

fected by analysis grain and positional error of species occurrences. Coarsening 
of the analysis grain has been suggested to compensate for positional errors. 
Nevertheless, this way of dealing with positional errors has never been thor-
oughly tested. With increasing use of fine-scale environmental data in SDMs, it 
is important to test this assumption. Models using fine-scale environmental data 
are more likely to be negatively affected by positional error as the inaccurate 
occurrences might easier end up in unsuitable environment. This can result in 
inappropriate conservation actions.

2.	 Here, we examined the trade-offs between positional error and analysis grain 
and provide recommendations for best practice. We generated narrow niche 
virtual species using environmental variables derived from LiDAR point clouds 
at 5 × 5 m fine-scale. We simulated the positional error in the range of 5 m to 
99 m and evaluated the effects of several spatial grains in the range of 5 m to 
500 m. In total, we assessed 49 combinations of positional accuracy and analysis 
grain. We used three modelling techniques (MaxEnt, BRT and GLM) and evalu-
ated their discrimination ability, niche overlap with virtual species and change in 
realized niche.

3.	 We found that model performance decreased with increasing positional error in 
species occurrences and coarsening of the analysis grain. Most importantly, we 
showed that coarsening the analysis grain to compensate for positional error did 
not improve model performance. Our results reject coarsening of the analysis 
grain as a solution to address the negative effects of positional error on model 
performance.
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1  |  INTRODUC TION

Species distribution models (SDMs) use species occurrence data and 
environmental explanatory variables to infer species–environment 
relationships and predict species distribution ranges (Ferrier 
et al., 2017). Despite their routine use and relatively well-established 
practices (Simoes et al.,  2020) and standards (Araújo et al.,  2019; 
Merow et al.,  2019), some methodological considerations still re-
quire further investigation. With the increasing availability of het-
erogeneous data from a multitude of sources of varying quality, 
careful assessment of uncertainties and purpose-built methodol-
ogies are becoming more important (Wüest et al.,  2020). Indeed, 
recent recommendations and methodological improvements are 
particularly relevant to data quality issues such as positional error, 
sampling bias, sample size and scale. Specialized tools have been de-
veloped for the identification of positionally inaccurate records (e.g. 
Robertson et al.,  2016; Zizka et al.,  2019). Similarly, development 
and testing of sampling bias correction methods continue (Gábor, 
Moudrý, Barták, & et al.,  2020; Inman et al.,  2021) as well as the 
research into the effects of sample size (Hallman & Robinson, 2020; 
Jiménez-Valverde,  2020; McPherson et al.,  2004; McPherson & 
Jetz, 2007) and of changing the grain of response and explanatory 
variables (Mertes & Jetz, 2018; Šímová et al., 2019).

Additionally, a key question, namely at which spatial scales 
(grains) the ecological processes underlying species distribution 
patterns operate, continues to be debated (Mertes & Jetz,  2018; 
Miguet et al., 2016; Pearson & Dawson, 2003). SDMs can be devel-
oped on a very wide range of grains (e.g. from 1 m2 to 10,000 km2 or 
more) and several studies (e.g. Guisan et al., 2007; Kaliontzopoulou 
et al., 2008; Seo et al., 2009) reported effects of the analysis grain 
on the performance of SDMs. At some spatial scales, species re-
spond more strongly to their environment than at others (Holland 
et al., 2004; Mayor et al., 2009; McGarigal et al., 2016). This is often 
referred to as ecological scale, scale of effect, response grain or 
response scale (Holland et al.,  2004; Mertes & Jetz,  2018; Wu & 
Li, 2006). Here, we follow Mertes and Jetz (2018) and use the term 
‘response grain’ to indicate the theoretical scale at which individuals 
of a species respond to environmental factors and ‘analysis grain’ to 
describe the spatial unit (grain) at which the species occurrence is 

modelled. As the chosen analysis grain affects our ability to detect 
the species' response to environmental factors (variables), factors 
such as positional errors of species occurrences, resolution of avail-
able environmental data and the response grain on which species 
are expected to respond to the environment need to be considered 
(Dungan et al.,  2002; Lechner et al.,  2012; Lecours et al.,  2015; 
Schneider, 2001).

It is increasingly recognized that positional uncertainty (associated 
with the location of species observations) is an important factor to con-
sider during the modelling process. Positional errors cause problems in 
modelling, as environmental conditions at the recorded locations might 
differ from those at actual locations, which (as was demonstrated) can 
have a significant impact on SDM results. For example, Visscher (2006) 
showed that positional error can bias inferences about species–
environment relationships. Similarly, Johnson and Gillingham  (2008) 
concluded that positional errors have a significant effect on model 
quality, and Osborne and Leitão (2009) recommended minimizing po-
sitional errors through careful study design and data processing. More 
recently, Hefley et al. (2014) pointed out that positional errors can lead 
to biased estimates of regression coefficient. Indeed, the Darwin Core 
Standard (https://dwc.tdwg.org/) has proven to be useful for recording 
positional uncertainty of species occurrences (Wieczorek et al., 2012), 
and the importance of georeferencing accuracy has been highlighted 
by many studies (e.g. Moudrý & Devillers, 2020), including a report on 
the suitability of Global Biodiversity Information Facility (GBIF) data 
for use in SDMs (Anderson et al., 2016).

Notably, with the increasing use of fine-scale resolution data in 
SDM, such as variables derived from LiDAR with a resolution of a few 
meters (e.g. Lecours et al., 2020; Moudrý et al., 2021; Pradervand 
et al., 2014; Sillero & Goncalves-Seco, 2014; Simonson et al., 2014; 
Wüest et al., 2020), the negative effects of positional error in spe-
cies occurrence data are no longer associated only with relatively 
old datasets (e.g. from herbarium or museum collections), but it is 
also necessary to consider positional errors inherent to data geo-
referenced using global navigation satellite systems. Indeed, Gábor, 
Moudrý, Lecours, et al. (2020) used a 5 × 5 m analysis grain and re-
ported that the largest drop in model performance was observed 
at the smallest simulated positional error of 5–10 m (they simulated 
errors up to 500 m).

4.	 We recommend fitting models with the finest possible analysis grain and as 
close to the response grain as possible even when available species occurrences 
suffer from positional errors. If there are significant positional errors in spe-
cies occurrences, users are unlikely to benefit from making additional efforts to 
obtain higher resolution environmental data unless they also minimize the posi-
tional errors of species occurrences. Our findings are also applicable to coarse 
analysis grain, especially for fragmented habitats, and for species with narrow 
niche breadth.

K E Y W O R D S
georeferencing, grain size, resolution, scale, SDM, virtual species
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Both positional error and adopted analysis grain have been in-
tensively studied; however, despite their interconnectedness, their 
interactions and trade-offs are rarely systematically addressed (but 
see Engler et al., 2004, Montgomery et al., 2011, Cheng et al., 2021). 
Particularly, the trade-off between the adopted analysis grain and 
positional error of species occurrence data is poorly acknowledged. 
Typically, studies try to balance these interconnected issues based 
on available data and metadata (i.e. users might know the positional 
error of occurrences but do not know the optimal grain and vice 
versa). For example, researchers aim to georeference species oc-
currences with respect to adopted analysis grain (Ballesteros-Mejia 
et al., 2017) or, when using already georeferenced data, they remove 
imprecise occurrences (e.g. records with latitude and longitude pre-
cision lower than three decimal places or with known high positional 
uncertainty; Gueta & Carmel, 2016, Watcharamongkol et al., 2018, 
Ellis-Soto et al.,  2021). Alternatively, coarsening the analysis grain 
can be used for correcting georeferencing errors (Engler et al., 2004; 
Keil et al., 2014; Moudrý & Šímová, 2012; Sillero & Barbosa, 2021; 
Vollering et al., 2016). These techniques, however, have a drawback: 
removing positionally inaccurate records or coarsening the analysis 
grain reduce the sample size. Moreover, the latter approach can lead 
to the loss of explanatory power of the model (as the grain at which 
species respond to the environment might be better represented by 
a finer grain). This may indeed limit our ability to observe how spe-
cies respond to the environment (Mertes & Jetz, 2018).

All in all, it is evident that both analysis grain and positional accu-
racy are important and interacting factors affecting SDM results (i.e. 
environmental niches and spatial distributions of modelled species). 
However, the knowledge of how they interact and the implications 
for modelling practice is lacking. It is crucial to have this knowledge, 
especially with increasing availability of fine-scale environmental 
data (e.g. Haesen et al., 2021; Li et al., 2021) and their use in predic-
tive models developed for conservation and climate change stud-
ies (see for example Lembrechts, Lenoir, et al.,  2019; Lembrechts, 
Nijs, & Lenoir, 2019; Stark & Fridley, 2022; Zellweger et al., 2019). 
Therefore, we here address the following questions: (a) What are the 
trade-offs between analysis grain and positional error when model-
ling species distributions? (b) Is it advisable to coarsen the analysis 
grain to minimize the effect of the positional error, or should the 
analysis grain be kept as close as possible to the assumed response 
grain, regardless of the positional error?

2  |  MATERIAL S AND METHODS

2.1  |  LiDAR data and derived environmental 
variables

We used a point cloud from airborne laser scanning of Krkonose 
Mountains National Park, Czech Republic, that covers over 370 
square kilometres (approximately 30 km in west/east direction and 
13 km in south/north direction), to derive three fine-scale envi-
ronmental variables. It has been shown that the negative effect of 

positional error varies according to the degree of spatial autocorrela-
tion in environmental variables. The lower is the spatial autocorrela-
tion in environmental variables the more pronounced is the negative 
effect of positional error in species occurrences (Naimi et al., 2011, 
2014). Therefore, we chose environmental variables with various 
levels of spatial autocorrelation to mimic a real modelling situation 
(Figure A1). Note, that spatial autocorrelation is a function of resolu-
tion and may change as the analysis grain is coarsened (see Mertes 
& Jetz,  2018). However, this is not our case, as the environmental 
variables maintained similar spatial autocorrelation across all used re-
sponse grains (see Figure A1). Specifically, we used the canopy height 
model (CHM) representing structural variability of the canopy, topo-
graphic wetness index (TWI) as a surrogate for soil moisture, thus 
affecting vegetation composition, and altitude in the form of a digital 
terrain model (DTM) as a surrogate for microclimatic conditions. All 
these variables have been used in other studies for modelling spe-
cies distributions, for example, of birds (e.g. Bakx et al., 2019; Reif 
et al., 2018; Vogeler et al., 2014). Hence, our virtual species might 
represent a bird with certain habitat requirements in terms of vegeta-
tion structure, climate and terrain characteristics. To derive the three 
environmental variables at a resolution of 5  × 5  m, first the point 
cloud was classified into vegetation, building and ground classes in 
the ENVI and LAStools software (Klápště et al., 2020). Second, fol-
lowing Khosravipour et al.  (2016), we used points classified as veg-
etation to produce the CHM; points representing ground were used 
to create the DTM, which was subsequently used to derive the TWI.

2.2  |  Generating virtual species

We adopted the virtual species approach, which is increasingly 
used to answer methodological questions related to SDMs (Zurell 
et al., 2010). This popularity is due in particular to the fact that it 
is difficult to draw clear methodological conclusions with real data, 
since the actual distribution as well as data deficiencies that might 
influence the results are unknown (Grimmett et al.,  2021; Inman 
et al., 2021; Meynard et al., 2019; Moudrý, 2015). We used the vir-
tualspecies package (ver. 1.5.1) in the statistical software R (R Core 
Team, 2021) to generate virtual species (Leroy et al., 2016). To begin, 
we defined the response of virtual species to the environmental gra-
dient at a resolution of 5 × 5 m (i.e. the finest resolution at which en-
vironmental variables were available). We used a normal distribution 
with the following parameters: (a) mean canopy height of 9 m and 
standard deviation of 4 m, (b) mean altitude of 846 m and standard 
deviation of 100 m and (c) mean TWI of 8 and standard deviation of 
0.4 m. These parameters allowed us to simulate virtual species with 
a narrow niche breadth as it has been suggested that SDMs of such 
species are more prone to positional error (Gábor, Moudrý, Lecours, 
et al., 2020; Visscher, 2006). We then multiplied the responses to 
obtain an environmental suitability raster. We applied the probabilis-
tic approach (logistic function with α = −0.05 and β = 0.3) to convert 
the environmental suitability raster into probabilities of occurrences 
that were subsequently used to sample binary presence–absence 
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rasters. We developed both presence-only and presence–absence 
models (see below), using 99 presence sites and 200 absence sites 
(i.e. sample prevalence of 0.33), and a uniform random distribution 
for sampling species presences and absences. The virtual species 
could be recreated using the ‘vs’ object and R script that is available 
via the Dryad repository (see the data availability statement for link).

2.3  |  Simulating positional error and coarsening the 
analysis grain

Positional error in species occurrence data may range from a few me-
tres up to hundreds of metres, depending on the data gathering tech-
nique and the source of the error. Here, we simulated the positional 
error in the range of 5 m to 99 m. We shifted each occurrence point 
in a random direction by a specified distance according to 6 scenarios. 
Each scenario is associated with a different shift, as follows: S1: 5–9 m, 
S2: 10–19 m, S3: 20–29 m, S4: 30–39 m, S5: 40–49 m and S6: 90–99 m. 
The scenario with the original, that is, not shifted, data is referred to as 
‘unaltered’ hereafter. The R functions we used to simulate positional 
error in species occurrences are available in the R script via the Dryad 
repository. To test the effect of coarsening the analysis grain and, in 
particular, to assess whether the coarsening of the analysis grain can 
compensate for the negative effect of the positional error, we ran 
models at seven analysis grains representing two distinct situations, 
namely: (a) the response grain is known and relatively fine-scale data 
are available (5  × 5  m, 20 × 20 m, 40 × 40 m, 60 × 60 m, 80 × 80 m and 
100 × 100 m) and (b) the analysis grain is selected on the basis of data 
availability (500 × 500 m). In the first situation, we used small steps 
(changes) and multiple scales to capture any minor changes, whereas 
in the second situation, the analysis was conducted with a grain con-
siderably coarser than the response grain (a hundred times coarsened 
grain), which is undoubtedly a situation prevalent in current modelling 
practice. Thus, a total of 49 combinations of positional accuracy of spe-
cies occurrences and analysis grains were evaluated. All environmental 
variables were resampled to coarser grains using the mean values of 
the original data (Moudrý et al., 2019). Note that coarsening the analy-
sis grain results in multiple sampling sites ending up in the same cell 
(e.g. Engler et al., 2004; Guisan et al., 2007). When absences and pres-
ences occurred in the coarser grain cell after aggregation, the cell was 
considered a ‘presence’ cell, resulting in a small decrease in the number 
of absences. We did not observe multiple presences aggregated into a 
single cell (note that the largest analysis grain also limited the maximum 
number of background points for MaxEnt; see Table A1). It is intuitive 
that the quality of the models is related to sample size. Indeed, prior 
studies showed that sample size play an important role in SDMs. In 
particular, they mostly concentrated on the effects of available pres-
ences on the development of accurate presence-only models (e.g. van 
Proosdij et al., 2016; Wisz et al., 2008). Recently, Liu et al. (2019) used 
virtual species approach and recommended that hundreds of presences 
are needed to reach the plateau where increasing the sample size adds 
little to the model performance. Therefore, we keep constant number 
of 99 presences for all scenarios. McPherson et al.  (2004) evaluated 
the effects of sample size on the development of presence–absence 

models and shown that models trained with sample size of 300 (pres-
ences and absences) perform better than those trained with 100. In 
addition, Jiménez-Valverde et al.  (2009) found that the effect of the 
sample size becomes apparent for models trained with less than 70 
samples. Therefore, for presence–absence models we keep the con-
stant number of 99 presences, and we let the absences to slightly vary 
between 150 and 200 (Table A1). Such minimal changes in number of 
absences certainly did not affect our results.

2.4  |  Model fitting

Three common modelling methods were used to fit species occur-
rence to environmental predictors: generalized linear model (GLM), 
boosted regression tree (BRT) and the maximum entropy model 
(MaxEnt). GLM, implemented in the r package glm2 (ver. 1.2.1, 
Nelder & Wedderburn, 1972; Oksanen & Minchin, 2002), and BRTs, 
implemented in the gbm package (ver. 2.1.5, Friedman et al., 2000), 
represented presence–absence methods, and MaxEnt, implemented 
in the dismo package (ver. 1.1-4, Phillips et al.,  2006; ver. 3.4.3 of 
maxent.jar file, Phillips et al., 2020), a presence-background method. 
Using both presence-absence and presence-background methods 
allowed us to assess whether they are equally affected by positional 
errors and by coarsening of the analysis grain. The GLM was run 
with a logit link function and a binomial distribution. The quadratic 
terms of the environmental variables were included based on the 
known normal distribution curves of the response function. For BRT, 
we used Bernoulli distribution, shrinkage (learning rate) of 0.01, tree 
complexity of 1 (i.e. without interaction terms), bag fraction (the pro-
portion of data used when selecting optimal tree number) of 0.5, and 
the maximum number of trees of 5,000. MaxEnt was used with de-
fault settings (i.e. auto features, logistic output format) and 10,000 
backgrounds points. The only exception was for models with an 
analysis grain of 500 × 500 m, where the number of grids/cells was 
not sufficient to sample 10,000 background points, so we ended 
up with a smaller number of background points (see Table A1). The 
same three environmental variables (CHM, DTM and TWI) that were 
used in the process of generating virtual species were also used to fit 
the models in seven analysis grains (see the previous section).

2.5  |  Model evaluation

We used several discrimination metrics to evaluate the performance 
of the models. First, we used the Sørensen index (SI), which has been 
recommended for the evaluation of experiments testing SDM meth-
odologies using virtual species (Leroy et al., 2018; Li & Guo, 2013). We 
also aimed to determine whether predictions using erroneous/altered 
data tend to over- or underpredict species occurrences. Thus, we cal-
culated the overprediction and underprediction rates. Overprediction 
refers to the proportion of observed absences in the predicted pres-
ence area, and underprediction measures the proportion of actual 
presences that were not predicted by the model (Barbosa et al., 2013; 
Leroy et al., 2018). However, these metrics use only three components 
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(true positives, false positives and false negatives) of the confusion 
matrix and neglect the prediction of true negatives (Leroy et al., 2018). 
Because we manipulated the input data (i.e. introduced the positional 
error and changed the analysis grain), we were concerned that this 
might also affect the true negatives. Therefore, we added the area 
under the receiver operating characteristic curve (AUC; Fielding & 
Bell,  1997; despite recent criticisms of this metric, see for example 
Lobo et al., 2008, Jiménez-Valverde, 2012) and the true skill statistics 
(TSS; Allouche et al., 2006), which are commonly used to assess the 
discriminatory power of models.

In addition, we took advantage of the virtual species approach and 
compared differences between the predicted distribution inferred 
from the models and the true probability of occurrence of virtual spe-
cies in geographical space. However, it has been stressed that metrics 
used for niche comparison are seriously affected by the inclusion of 
large number of cells where the species are absent (i.e. with low occur-
rence probabilities), and it has been recommended to remove such cell 
from the evaluation (Rödder & Engler, 2011). Therefore, for this eval-
uation, we extract occurrence probability only for occurrence data, 
which were used in the models. We used Spearman's rank correlation 
to quantify the differences. See Figure A2 for visual comparison be-
tween virtual species true distribution and predicted probability of all 
modelled scenarios. Note that this comparison was performed using 
the same resolution for all models' predictions (i.e. 500 m).

The model performance was evaluated at the analysis grain at 
which the individual models were fitted, which is a common prac-
tise in studies evaluating effect of analysis grain on the performance 
of SDM (e.g. Guisan et al.,  2007, Kaliontzopoulou et al.,  2008, Seo 
et al., 2009, Mertes & Jetz, 2018; Lembrechts, Lenoir, et al., 2019; Stark 
& Fridley, 2022; Zellweger et al., 2019). Performance metrics for each 
model were calculated using fivefold cross-validation for which the data 
were randomly divided into fifths. Four-fifths of the data were used to 
train the model and the remaining one-fifth was used to assess the per-
formance. We performed the entire process from species generation 
to model evaluation 50 times and calculated average values and confi-
dence intervals (MacKinnon & White, 1985) of validation metrics from 
all replications. See Figure 1 for an overview of the general modelling 
process. Besides comparison of models' performance, we used linear 
regression to quantify how introducing positional error and coarsening 
of environmental variables affects species realized niche.

3  |  RESULTS

3.1  |  Effects of positional error and analysis grain 
on species realized niche

Figure 2 shows linear regression line plots of species realized niche 
for unaltered and altered occurrence data across various analysis 
grains and all combinations of environmental data. It is obvious, that 
both introducing positional error and coarsening the analysis grain 
led to changes in species realized niche. More notably, the coarsen-
ing of analysis grain did not help to reconstruct the original niche. 

The change in realized niche is more pronounced for combination of 
environmental variables with lower spatial autocorrelation (i.e. TWI 
versus CHM; see Figure A1).

3.2  |  Overall model performance

All metrics largely followed the same pattern. Therefore, we focus 
only on SI and Spearman's rank correlation (for AUC TSS, over-
prediction rate and underprediction rate values, see Supporting 
Information Figures A3 and A4). BRT and MaxEnt performed very 
well while GLM performed slightly worse using unaltered data and 
resolution of environmental variables (5 × 5 m). The SIs of the unal-
tered models were 0.76 for MaxEnt, 0.74 for BRT and 0.67 for GLM 
(Figure  3). Spearman's rank correlation indicates that MaxEnt and 
BRT models using unaltered data have high niche overlap with vir-
tual species. They reached Spearman's rank correlation of 0.95 and 
0.9, respectively. In contrast GLM achieved lower niche overlap and 
Spearman's rank correlation of 0.6 (Figure 3).

3.3  |  Effects of positional error and analysis grain

The performance of all modelling methods was negatively affected 
by the positional error in species occurrences. Results show a clear 
trend of decreasing model performance and increasing overpre-
diction and underprediction rate with increasing positional error 
(Figure 3, A3), with the largest drop in performance occurring once 
positional error was introduced (i.e. between the no-error and 5–9 m 
error categories). For example, SI dropped from 0.76 to 0.72 and 
from 0.74 to 0.67 for MaxEnt and BRT, respectively (Figure 3). As 
the position error continued to increase, a slow but gradual decline 
in model performance was observed. The exception from this pat-
tern is GLM modelling method where the negative effect of posi-
tional error is noticeable only for scenarios with more pronounced 
positional error (i.e. 40  m and higher). The SI dropped from 0.67 
(unaltered models) to 0.64 (90–99 m error). Regardless of modelling 
technique introducing positional error led to decrease in niche over-
lap between true and predicted species distribution probability. For 
example, Spearman's rank correlation dropped from 0.96 to 0.76 for 
MaxEnt, respectively, from to 0.6 to 0.34 for GLM (Figure 3).

The results also show a clear trend of decreasing model per-
formance as the analysis grain is coarsened compared with the re-
sponse grain (i.e. from the original resolution at which the virtual 
species were generated; 5 × 5 m). The largest decrease was observed 
between the unaltered models (5 m) and the models with the small-
est change in the analysis grain (20 m). For example, SI decreased 
from 0.76 to 0.72 and from 0.74 to 0.67 for MaxEnt and BRT, respec-
tively (Figure 3). Further coarsening of the analysis grain resulted in 
an additional decrease in models' performance; however, the overall 
decrease in performance between 20 m and 500 m was less than the 
decrease caused by the initial change in analysis grain (Figure 3). The 
same pattern shows also niche comparison assessed by Spearman's 
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rank correlation (Figure 3). Note that the observed trends were inde-
pendent of the validation metric.

3.4  |  Trade-off between positional error and 
analysis grain

Finally, and most importantly, our results clearly showed that 
coarsening the analysis grain cannot compensate for the effect 

of positional error (Figure 4). For each scenario positional error 
(S1–S6), we can observe that models with an analysis grain 
coarser than the initial grain (5  m) performed, at best, equally 
well, but never better than those with initial grain (i.e. response 
grain). In addition, models with a positional error of 20–29 m 
(S3) and higher perform almost equally well regardless of the 
analysis grain. This applies to all used performance metrics and 
Spearman's rank correlation used to assess the species niche 
overlap (Figure 4, Figure A4).

F I G U R E  1  Overview of the modelling 
process. We first acquired and processed 
LiDAR data and selected three fine-scale 
environmental predictors (canopy height 
model, topographic wetness index, digital 
terrain model; Section 2.1). Furthermore, 
we generated virtual species (2.2), 
simulated positional error in species 
occurrences, and coarsened analysis grain 
(2.3). We modelled species distribution 
with unaltered data as well as with shifted 
occurrences at various analysis grain sizes 
(2.4). In the last step, we evaluated models 
and compared their performance (2.5).
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F I G U R E  2  Comparison of changes in realized niche as a result of positional error in species occurrences and coarsening the analysis grain. 
Different colours show various levels of positional uncertainty while columns show different analysis grain. The line is obtained by linear 
regression and grey colour shows 95% confidence interval.
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4  |  DISCUSSION

In this study, we focused on the trade-off between the analysis grain 
and positional error in fine-scale SDMs. We simulated virtual species 
at 5 m resolution, coarsened the analysis grain (5–500 m) and intro-
duced positional error (5–99 m) to evaluate their individual effects 
and potential trade-offs between them. Our results showed a nega-
tive effect of coarsening the analysis grain on SDMs performance. 
All modelling techniques were sensitive to the change in analysis 
grain (see also Guisan et al., 2007 for an analysis of the sensitivity 
of 10 modelling techniques to the change in grain size). Although 
this could be perceived as a negative, we believe that this is actually 
a positive characteristic, as it means that these models are sensi-
tive to the use of an (in)appropriate resolution of the analysis grain. 

Similarly, introducing positional error led to a decrease in the dis-
criminative ability of all modelling methods; yet, and importantly, 
coarsening the analysis grain did not offset for the effects of posi-
tional error.

The correct choice of the analysis grain is an important part of 
the overall modelling process and is affected by several other mod-
elling choices. Ideally, the analysis grain is dictated by the species 
ecology and the objectives of the study, that is, it must match the 
response grain (Mertes & Jetz, 2018) but it could be also affected by 
sampling processes of species occurrences (Chase & Knight, 2013; 
Hurlbert & Jetz, 2007; Rahbek, 2005) and by the spatial extent of 
the study area. The spatial extent and resolution of the response 
variable govern what explanatory variables can be expected to 
act in determining species distribution (Pearson & Dawson, 2003). 

F I G U R E  3  Sørensen index and 
Spearman's rank correlation scores of the 
different models. The first row shows 
results for models fitted with different 
analysis grains. The second row shows 
results for models fitted with an analysis 
grain of 5 m, but with positionally shifted 
species occurrences.
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Typically, it is assumed that climate defines the distribution of spe-
cies at very broad spatial scales (e.g. an extent of a whole continent 
and resolution of 100 km2). At successively finer resolutions and at 
regional extents, topography or biotic interactions may become the 
most important factors controlling species occurrence, whereas at 
even finer resolutions, vegetation structure or presence of individ-
ual land cover categories (e.g. water bodies) can play a role (Gábor, 
Šímová, et al., 2022). However, some studies suggest that biotic in-
teractions may shape species distribution across all spatial extents 
(Alexander et al., 2015; Wisz et al., 2013). Generally speaking, the 
importance of environmental factors varies with the adopted res-
olution and extent of the study and factors that are important at 
one resolution and extent can lose their importance at others (Corsi 
et al., 2000).

There are two typical situations regarding the choice of the 
analysis grain in species distribution modelling: (a) we know the 
response grain and have fine-scale data available or (b) we do not 
know the response grain and/or the analysis grain is chosen based 
on data availability rather than species ecology (Graf et al.,  2005; 
Holland et al.,  2004; Lechner et al.,  2012; Martin & Fahrig,  2012; 
Mertes et al., 2020; Stuber & Fontaine, 2019). The first situation is 
represented in this study by the range of analysis grains from 5 m 

to 100 m, and the second by the 500 m grain. It should be noted 
that models are regularly built using an even coarser analysis grain 
than those tested in this study (e.g. 5 km or 10 km when using atlas 
data; Jetz et al., 2012). However, several studies have already tested 
the general effect of changing the grain of the response variable on 
modelling the species distribution in situations where the spatial 
resolution of the response variable was considerably coarser than 
the assumed response grain. For example, Seo et al.  (2009) exam-
ined SDMs dynamics across a 64-fold (1 km to 64 km) change in the 
grain of the response variable and found that model performance 
decreased with increasing resolution. Similarly, Kaliontzopoulou 
et al. (2008) reported decreasing model performance at the 10 km 
response variable resolution compared with 1 km resolution.

Our results show that compensating position errors by coars-
ening the analysis grain does not lead to an improvement of the 
model performance in any of the scenarios investigated (Figure 4, 
A4). This is true even for very coarse analysis, that is, an analysis 
grain several orders of magnitude larger than the expected re-
sponse grain. Therefore, based on our results and the results of the 
above-mentioned studies, we recommend using an analysis grain as 
fine as possible (or, in other words, as close to the response grain 
as possible), even if the available species occurrences suffer from 

F I G U R E  4  Sørensen index and Spearman's rank correlation scores according to different analysis grains and positional error scenarios 
(unaltered and S1–S6).
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positional error. This is consistent with recent findings by Mertes 
and Jetz (2018), who showed that coarsening the analysis grain can 
negatively affect intrinsic fine-scale heterogeneity in environmental 
variables (i.e. the pattern of spatial autocorrelation inherent in an 
environmental variable) and lead to variables that strongly influence 
distribution patterns being discarded simply because of their low ex-
planatory power at such coarsened resolution. On the other hand, 
this contradicts the widely held assumption that coarsening the anal-
ysis grain can compensate for the negative effect of positional errors 
on model performance (Engler et al., 2004; Keil et al., 2014; Moudrý 
& Šímová, 2012; Sillero & Barbosa, 2021; Vollering et al., 2016), but 
this has never been thoroughly tested. Our results show that above a 
certain level of positional error (approximately five times higher than 
the response grain), models perform almost the same regardless of 
the analysis grain. Therefore, if there is considerable positional error 
in species occurrence data, users are unlikely to gain anything from 
making additional efforts to obtain higher-resolution data (but see 
Šímová et al., 2019) unless they also minimize the positional error.

Our findings and recommendations, however, do not mean that 
negative effects of the positional error can be ignored. On the con-
trary, the inability to compensate for the positional error by coars-
ening the analysis grain underscores the importance of careful 
georeferencing of species occurrence data. Our results show that 
the largest decrease in model performance occurs in the smallest 
simulated positional error (i.e. as soon as an error is introduced). 
This is consistent with previous studies and their conclusions that 
more accurate georeferencing approaches generally produce bet-
ter performing SDMs (Gábor, Moudrý, Lecours, et al.,  2020; Lash 
et al., 2012; Tulowiecki et al., 2015; Zhang et al., 2018). For example, 
Lash et al.  (2012) have shown that using less accurate automated 
georeferencing methods is problematic in mapping the occurrence 
of monkeypox and modelling its transmission risk in Africa. The same 
limitations have been reported by Tulowiecki et al.  (2015) for pre-
settlement land survey records in North America that are useful for 
modelling the past distribution of tree species (e.g. Tulowiecki, 2020). 
On the other hand, it is fair to point out that Graham et al.  (2008) 
concluded that SDMs are generally robust to positional errors. 
Similarly, Fernandez et al.  (2009) concluded that while the models 
are somewhat sensitive to positional error, this sensitivity is consid-
erably less than the sensitivity to the modelling method.

However, accurate georeferencing is an extremely time-
consuming and labour-intensive process. In particular, georeferenc-
ing historical records can be challenging because in some parts of 
the world it is difficult to find suitable reference data with which to 
match place names. Guidelines for georeferencing exists (Wieczorek 
et al.,  2004), and some heuristic approaches have been proposed 
to improve models created with poorly georeferenced data. These 
methods are applicable depending on the source of positional error 
and the available auxiliary data. For example, Hefley et al.  (2014) 
used regression calibration to reduce the bias in coefficient esti-
mates caused by the positional error. However, this approach re-
quires that at least part of the data has locations recorded without 
error. Recently, Zhang et al.  (2018) proposed a different approach 

to mitigate positional error in fine analysis grains (e.g. errors of tens 
of meters caused, for example, by the difference in position of the 
species and the observer). They narrowed down possible locations 
of species occurrences using auxiliary data such as the presence of 
habitat preferred by the species (e.g. forest), the assumed minimum 
and maximum distance (i.e. minimum distance the species keeps 
from the observer and the maximum distance at which the observer 
can see the species), and the observer's field of view (i.e. visibility 
analysis using a DTM; Lagner et al., 2018).

We intentionally developed our models with fine-scale environ-
mental data that are increasingly adopted for SDMs (e.g. de Vries 
et al., 2021; Guillaume et al., 2021; Mitchell et al., 2017). Although 
so far, such data are typically used in models developed to assess 
species–environment relationships at a landscape scale, it has been 
highlighted that they can be crucial for understanding species distri-
butions at global scales (Lembrechts, Lenoir, et al., 2019; Lembrechts, 
Nijs, & Lenoir, 2019; Stark & Fridley, 2022; Zellweger et al., 2019). 
Moreover, such fine-scale environmental data tend to be more het-
erogeneous, and hence species occurrences might easier end up 
in unsuitable environment, which can negatively affect SDMs (see 
Naimi et al., 2011, 2014). Therefore, understanding the interaction 
of analysis grain and positional error at fine-grain is crucial for future 
development of SDMs for conservation and climate change studies.

It is important to note that the effect of analysis grain and posi-
tional error is dependent on the magnitude of the potential change 
of the analysis grain (not the grain itself) and similarly the effect of 
positional error depends on the ratio between the magnitude of the 
positional error and the analysis grain. In addition, the magnitude of 
the effect will be affected by other characteristics. For example, it 
has been shown that the magnitude of the negative effect of posi-
tional error is related to species characteristics, such as niche (Gábor, 
Moudrý, Lecours, et al., 2020; Tulowiecki et al., 2015; Visscher, 2006) 
and heterogeneity in environmental variables (i.e. spatial autocor-
relation; Naimi et al., 2011, 2014). For instance, models for species 
with relatively wide niche breadth and a region dominated by highly 
autocorrelated environmental variables or a single habitat will be 
relatively unaffected by positional error. On the contrary, the mod-
els for a region with abrupt changes (e.g. fragmented habitats) and 
for species with narrow niche breadth will be negatively affected 
with positional error in species data (see Naimi et al., 2011, 2014; 
Visscher, 2006). Therefore, our conclusions are also applicable into 
analysis using relatively coarse analysis grain, especially for SDMs 
developed for a region with abrupt changes in environment (e.g. 
fragmented habitats) and for species with narrow niche breadth 
(see Gábor, Moudrý, Barták, et al., 2020, Gábor, Moudrý, Lecours, 
et al. 2020; Naimi et al., 2011, 2014).

In this study, we examined how, in a species distribution mod-
elling context, analysis grain and positional error in species occur-
rences interact. Our particular objective was to answer the question 
of whether the analysis grain is best kept close to the response grain 
or whether it should instead be coarsened to minimize the neg-
ative effects of positional errors in species occurrences on model 
performance, as suggested by several authors. We showed that a 
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coarsened analysis grain is not able to compensate for the effects of 
positional errors. Thus, for data with unknown positional accuracy, 
we recommend keeping the analysis grain as close as possible to the 
response grain rather than coarsening it. We highlight that positional 
error in species occurrence cannot be overlooked and that great at-
tention needs to be paid to the measurement and georeferencing 
techniques used to minimize positional error.
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