83 research outputs found

    Organoids of Human Endometrium: A Powerful In Vitro Model for the Endometrium-Embryo Cross-Talk at the Implantation Site

    Get PDF
    Embryo implantation has been defined as the "black box" of human reproduction. Most of the knowledge on mechanisms underlining this process derives from animal models, but they cannot always be translated to humans. Therefore, the development of an in vitro/ex vivo model recapitulating as closely and precisely as possible the fundamental functional features of the human endometrial tissue is very much desirable. Here, we have validated endometrial organoids as a suitable 3D-model to studying epithelial endometrial interface for embryo implantation. Transmission and scanning electron microscopy analyses showed that organoids preserve the glandular organization and cell ultrastructural characteristics. They also retain the responsiveness to hormonal treatment specific to the corresponding phase of the menstrual cycle, mimicking the in vivo glandular-like aspect and functions. Noteworthy, organoids mirroring the early secretive phase show the development of pinopodes, large cytoplasmic apical protrusions of the epithelial cells, traditionally considered as reliable key features of the implantation window. Moreover, organoids express glycodelin A (GdA), a cycle-dependent marker of the endometrial receptivity, with its quantitative and qualitative features accounting well for the profile detected in the endometrium in vivo. Accordingly, organoids deriving from the eutopic endometrium of women with endometriosis show a GdA glycosylation pattern significantly different from healthy organoids, confirming our prior data on endometrial tissues. The present results strongly support the idea that organoids may closely recapitulate the molecular and functional characteristics of their cells/tissue of origin

    Ribosome-Inactivating Proteins: From Plant Defense to Tumor Attack

    Get PDF
    Ribosome-inactivating proteins (RIPs) are EC3.2.32.22 N-glycosidases that recognize a universally conserved stem-loop structure in 23S/25S/28S rRNA, depurinating a single adenine (A4324 in rat) and irreversibly blocking protein translation, leading finally to cell death of intoxicated mammalian cells. Ricin, the plant RIP prototype that comprises a catalytic A subunit linked to a galactose-binding lectin B subunit to allow cell surface binding and toxin entry in most mammalian cells, shows a potency in the picomolar range. The most promising way to exploit plant RIPs as weapons against cancer cells is either by designing molecules in which the toxic domains are linked to selective tumor targeting domains or directly delivered as suicide genes for cancer gene therapy. Here, we will provide a comprehensive picture of plant RIPs and discuss successful designs and features of chimeric molecules having therapeutic potential

    Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine

    Get PDF
    Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedly, the rapidly emerging field of basic and applied EV research will significantly influence the biomedicinal landscape in the future. In this Perspective, we, a network of European scientists from clinical, academic, and industry settings collaborating through the H2020 European Cooperation in Science and Technology (COST) program European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), demonstrate the high potential of nanosized EVs for both diagnostic and therapeutic (i.e., theranostic) areas of nanomedicine. © 2016 American Chemical Society

    Targeted delivery of TNF-α to tumor vessels : gene therapy approach

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The cell type dependent sorting of CD9- and CD81 to extracellular vesicles can be exploited to convey tumor sensitive cargo to target cells

    No full text
    AbstractExtracellular vesicles (EVs) are lipid membrane-bound particles involved in cell-to-cell communication through a delivery of regulatory molecules essential for physiological processes. Since EVs efficiently vectorize specific cargo molecules, they have been proposed as suitable vehicles for therapeutic agents. Drug loading into EVs can be achieved by active, exogenous strategies or by genetic modifications of vesicle-producing cells. With the aim to produce EVs conveying therapeutic proteins, we genetically engineered and compared HEK293 to tumor cells. Tetraspanin-based RFP fusions were found to be more stable and preferentially sorted into EVs in HEK293. EVs isolated from genetically modified HEK293 cells media were captured by cancer cells, efficiently delivering their cargo. Cathepsin B cleavage site introduced between CD9/CD81 and RFP was recognized by tumor specific proteases allowing the release of the reporter protein. Our results indicate HEK293 cells as a preferential system for the production of EVs and pave the way to the development of nano-platforms for the efficient delivery of therapeutic proteins and prodrugs to tumor cells

    Stoichiometric constraints for detection of EV-borne biomarkers in blood

    No full text
    Stochiometric issues, encompassing both the quantity and heterogeneity of extracellular vesicles (EVs) derived from tumor or other tissues in blood, pose important challenges across various stages of biomarker discovery and detection, affecting the integrity of data, introducing losses and artifacts during blood processing, EV purification, and analysis. These challenges shape the diagnostic utility of EVs especially within the framework of established and emerging methodologies. By addressing these challenges, we aim to delineate crucial parameters and requirements for tumor-specific EV detection, or more precisely, for tumor identification via EV based assays. Our endeavor involves a comprehensive examination of the layers that mask or confound the traceability of EV markers such as nucleic acids and proteins, and focus on "Low abundance - low occupancy" scenario. Finally, we evaluate the advantages vs. limitations of digital technologies over more conventional bulk assays, suggesting that the combined use of both to capture and interpret the EV signals, in particular the EV surface displayed proteins, may ultimately provide quantitative information on their absolute abundance and distribution

    Secretome of in vitro cultured human embryos contains extracellular vesicles that are uptaken by the maternal side

    Get PDF
    Communication between embryo and maternal endometrium occurs during a specific time frame in which implantation is possible. Here we demonstrate for the first time that conditioned media from non-manipulated human embryos cultured in vitro for 3 days or up to the blastocyst stage contain extracellular vesicles (EVs) with a diameter of 50 to 200 nm and bearing the traditional microvesicle and exosome marker proteins CD63, CD9 and ALIX. The embryonic origin of these EVs has been confirmed by the presence of stemness gene transcripts and their enrichment in the non-classical HLA-G protein. NANOG and POU5F1 transcripts were shown to be contained in vesicles deriving from embryos at different stages of development. In line with a higher detection rate of the HLA-G protein in blastocysts compared to cleavage stage embryos, a significantly higher amount of HLA-G was found in vesicles accumulated in spent media from day 3 to day 5 of development compared to those isolated from the earlier stage. Uptake of dye-labeled embryo-derived EVs by human primary endometrial epithelial and stromal cells was also demonstrated with a fluorescence intensity signal significantly higher for cells treated with vesicles derived from blastocysts. Based on these findings, EV exchange may be suggested as an emerging way of communication at the maternal-fetal interface
    corecore