5 research outputs found

    A versatile, solvent-free methodology for the functionalisation of carbon nanotubes

    No full text
    High temperature activation of carbon nanotubes (CNTs) provides a new and highly versatile functionalisation strategy. The reaction allows the attachment of a wide variety of functional species onto the nanotube surface at grafting ratios between 1-8 wt%, whilst maintaining the intrinsic properties of the untreated materials. The underlying, radical-based, reaction mechanism has been established by quenching experiments and EPR studies. The distribution of the functionalised sites has been investigated at. the microscopic scale using tagging reactions. The grafted products have been characterized by electron microscopy, thermal analysis (TGA), Raman spectroscopy, and inverse gas chromatography (IGC). The change in the CNT surface properties after grafting has been quantified in terms of dispersive and specific surface energies, and altered dispersibilities in a broad range of solvents. It is possible to carry out the reaction using gas phase reagents, providing a clean, efficient, and scalable methodology, relevant to a diverse range of applications

    Surface Acid–Base Characterization of Containing Group IIIA Catalysts by Using Adsorption Microcalorimetry

    No full text
    corecore