17 research outputs found

    Global burden of chronic respiratory diseases and risk factors, 1990–2019: an update from the Global Burden of Disease Study 2019

    Get PDF
    Background: Updated data on chronic respiratory diseases (CRDs) are vital in their prevention, control, and treatment in the path to achieving the third UN Sustainable Development Goals (SDGs), a one-third reduction in premature mortality from non-communicable diseases by 2030. We provided global, regional, and national estimates of the burden of CRDs and their attributable risks from 1990 to 2019. Methods: Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we estimated mortality, years lived with disability, years of life lost, disability-adjusted life years (DALYs), prevalence, and incidence of CRDs, i.e. chronic obstructive pulmonary disease (COPD), asthma, pneumoconiosis, interstitial lung disease and pulmonary sarcoidosis, and other CRDs, from 1990 to 2019 by sex, age, region, and Socio-demographic Index (SDI) in 204 countries and territories. Deaths and DALYs from CRDs attributable to each risk factor were estimated according to relative risks, risk exposure, and the theoretical minimum risk exposure level input. Findings: In 2019, CRDs were the third leading cause of death responsible for 4.0 million deaths (95% uncertainty interval 3.6–4.3) with a prevalence of 454.6 million cases (417.4–499.1) globally. While the total deaths and prevalence of CRDs have increased by 28.5% and 39.8%, the age-standardised rates have dropped by 41.7% and 16.9% from 1990 to 2019, respectively. COPD, with 212.3 million (200.4–225.1) prevalent cases, was the primary cause of deaths from CRDs, accounting for 3.3 million (2.9–3.6) deaths. With 262.4 million (224.1–309.5) prevalent cases, asthma had the highest prevalence among CRDs. The age-standardised rates of all burden measures of COPD, asthma, and pneumoconiosis have reduced globally from 1990 to 2019. Nevertheless, the age-standardised rates of incidence and prevalence of interstitial lung disease and pulmonary sarcoidosis have increased throughout this period. Low- and low-middle SDI countries had the highest age-standardised death and DALYs rates while the high SDI quintile had the highest prevalence rate of CRDs. The highest deaths and DALYs from CRDs were attributed to smoking globally, followed by air pollution and occupational risks. Non-optimal temperature and high body-mass index were additional risk factors for COPD and asthma, respectively. Interpretation: Albeit the age-standardised prevalence, death, and DALYs rates of CRDs have decreased, they still cause a substantial burden and deaths worldwide. The high death and DALYs rates in low and low-middle SDI countries highlights the urgent need for improved preventive, diagnostic, and therapeutic measures. Global strategies for tobacco control, enhancing air quality, reducing occupational hazards, and fostering clean cooking fuels are crucial steps in reducing the burden of CRDs, especially in low- and lower-middle income countries

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Evaluation of Antimicrobial and Antibiofilm Activities of Copper Oxide Nanoparticles within Soft Denture Liners against Oral Pathogens

    No full text
    Objectives. Soft denture liners provide a favorable environment for adhesion and colonization of microorganisms. This in vitro study aimed to examine the efficacy of different concentrations of copper oxide nanoparticles (CuO NPs) incorporation into soft denture liner on the biofilm formation of the microbial species. Methods. Field Emission Scanning Electron Microscopy (FESEM) images from NPs were recorded. Antifungal susceptibility testing of CuO NPs against five standard strains of Candida albicans (CBS 10261, 1905, 1912, 1949, 2730), Streptococcus mutans (ATCC35668), Streptococcus sobrinus (ATCC27607), and Streptococcus salivarius (ATCC9222) was performed by the broth microdilution method with the Clinical and Laboratory Standards Institute reference method. The biofilm inhibition percentages of CuO NPs on the soft denture liners were determined by XTT assay. Results. The characterization of CuO NPs by scanning electron microscope (SEM) analyses confirmed the synthesis of NPs with appropriate structure and size with a mean diameter of 18.3 ± 9.1 nm. The CuO NPs successfully inhibited the growth of the tested standard strains of C. albicans and Streptococcus spp. at concentrations ranging from 64 to 128 µg mL−1. Indeed, incorporation of CuO NPs at a concentration of 500 µg mL−1 into the soft denture liners exhibited a significant activity (75%) in inhibition of C. albicans. biofilm formation in a dose-dependent manner. The biofilm formation of C. albicans in the presence of CuO NPs was lower than Streptococcus spp. in comparison with the control group (p<0.05). Conclusion. Incorporation of CuO NPs significantly decreased the colonization and plaque formation of the oral pathogens, especially C. albicans accumulation. These NPs may be useful as a promising agent for the antimicrobial management of soft denture liner materials

    Antimicrobial Activity of Thermocycled Polymethyl Methacrylate Resin Reinforced with Titanium Dioxide and Copper Oxide Nanoparticles

    No full text
    Aims. This study aimed to evaluate the effect of 2.5% and 7.5% copper oxide (CuO) and titanium dioxide (TiO2) nanoparticles on the antimicrobial activity of thermocycled polymethyl methacrylate (PMMA) denture base material against standard strains of yeast and bacteria species. Material and Methods. In this in vitro study, 150 disk-shaped (10 × 2 mm) specimens of heat-cured PMMA were prepared and divided into five groups (n = 30) to be reinforced with 2.5% CuO, 7.5% CuO, 2.5% TiO2, or 7.5% TiO2 nanoparticles and a control group (without nanoparticle). The specimens were thermocycled, and their antimicrobial activity was assessed against standard strains of yeast including Candida albicans and C. dubliniensis and oral bacteria species including Streptococcus mutans, S. sobrinus, S. salivarius, and S. sanguis. Data were analyzed with ANOVA and Tukey’s post hoc tests (α = 0.05). Results. Both concentrations of CuO and TiO2 nanoparticles had significant antimicrobial activity against S. salivarius, S. sanguis, and C. dubliniensis compared with the control group (P < 0.05). Significant differences existed between both 2.5% (P = 0.006) and 7.5% CuO (P = 0.005) and the control group against S. mutans. However, TiO2 groups were not significantly different from the control group against S. mutans. Concerning C. albicans, 7.5% TiO2 was the only nanoparticle with significantly higher antimicrobial activity compared with the control group (P = 0.043). Conclusions. Both concentrations of CuO and TiO2 were effective antimicrobial agents against S. salivarius, S. sanguis, and C. dubliniensis, and the concentration of CuO was effective against S. mutans. Yet, TiO2 was not much effective. Regarding C. albicans, only 7.5% TiO2 showed efficient antimicrobial activity

    Comparative Analysis of Virulence Factors of Homozygous and Heterozygous Strains of Candida albicans Vaginal Isolates

    No full text
    Although the epidemiology of pathogenic Candida species is changing due to invasive diseases, Candida albicans has become the common cause of human infections worldwide. Candida albicans is a diploid yeast with a mostly clonal mode of reproduction and without known complete sexual cycle. This species has two heterozygous and homozygous strains at hyphal wall protein 1 gene locus (hwp1). Little is known about virulence factors of these strains. The aim of this study was to evaluate the exoenzyme activity of heterozygous and homozygous C. albicans strains. A total of 60 stock Candida albicans species isolates, which consisted of 30 homozygous and 30 heterozygous strains, were used for exoenzyme activities. We used egg yolk agar, Sabouraud blood agar, and bovine serum albumin agar for evaluation of phospholipase, hemolysin, and proteinase activity, respectively. Homozygous strains of Candida albicans had more phospholipase and proteinase activity than heterozygous strains. However, there were no significant statistical differences between the two strains in the severity of exoenzymes production. Beta hemolysin activity was seen in 100% and 96.7% of the homozygous and heterozygous strains, respectively. The results of this study indicated that both of the strains exhibited exoenzyme activities in different ranges. There were no significant statistical differences in virulence factors between the homozygous and heterozygous strains

    Emerging of Fatal Colitis with Multidrug-Resistant Candida glabrata after Small Bowel Transplantation

    No full text
    Background. Small bowel transplantation is a potential option for patients with intestinal-failure, and the incidences of infections caused by Candida species that are more resistant to antifungal drugs are increasing in these patients. In this manuscript, we reported a case of fatal colitis after small bowel transplantation induces by multidrug-resistant (MDR) Candida glabrata. Case Presentation. A 52-year-old man has undergone an extensive small bowel resection with the length of the remaining bowel which was less than 40 cm who became a candidate for transplantation. Four months after transplantation, the patient experienced severe bloody diarrhea with abdominal distension. Ileoscopy and colonoscopy did not show neither pathological change and rejection nor cytomegalovirus (CMV) infection posttransplantation. Abdomen computed tomography showed diffuse moderate small bowel wall thickening. After detection of budding yeast in the stool samples, stool culture was positive for Candida, DNA was extracted, and ITS1-5.8s-ITS2 region of the fungal agent was amplified. Sequencing analysis of PCR and antifungal susceptibility testing revealed that this isolate was multidrug-resistant C. glabrata. Besides, there was no evidence for other pathogens known to cause infection in various laboratory tests. Immediate antifungal treatments with caspofungin remained unsuccessful, and on the eighteenth day of admission, the patient expires with septic shock. Conclusion. These findings highlight the challenging management of candidiasis in patients with small bowel transplantation. Infectious diseases due to MDR organisms have emerged as a vital clinical problem in this patient population

    Concomitant of Pulmonary Hydatid Cyst and Aspergilloma: A Rare Coinfection

    No full text
    The coexistence of cystic echinococcosis (CE) and aspergilloma is rather uncommon. Aspergillus species, saprophytic fungi, can colonize pulmonary cavities that are caused by tuberculosis, sarcoidosis, and CE. Infection by Aspergillus is often occurring in immunosuppressed patients. However, coinfection of aspergilloma with pulmonary hydatid cyst is very unusual, especially in an immunocompetent patient with unruptured cyst. Herein, we report a case of lung hydatid cyst coinfected with Aspergillus in a 42-year-old Iranian man from Southern Iran. Chest X-ray and computed tomography (CT) scan showed a circumscribed cystic lesion in the superior and inferior segment of the lower lobes of right and left lungs that suggests hydatid cyst. Radical surgery (lobectomy) was performed for the patient. Histopathological evaluation reconfirmed the classical laminated layer of hydatid cyst. Moreover, the ectocyst layer of the right lung showed the presence of numerous cluster septate hyphae with acute-angled branching, as seen in the morphology of Aspergillus species. DNA was extracted from the cyst, and the ITS1-5.8s-ITS2 region of the fungal agent was amplified. Sequencing and analysis of seminested PCR product revealed that the isolate has the most similarity with Aspergillus niger. Further attention is recommended to control fungal pathogens during pulmonary hydatidosis. The coexistence of aspergilloma should always be kept in mind for the better management of CE

    Detection of Aflatoxin and Ochratoxin A in Spices by High-Performance Liquid Chromatography

    No full text
    Background. Spices are one of the flavoring components of food in the cooking recipes of different nations that are used daily. However, these ingredients may be contaminated by toxicogenic fungi and subsequent production of mycotoxins that cannot be neutralized through cooking. In the present study, the possible contamination of spices by aflatoxins (AFs) and ochratoxin A (OTA) was investigated from Shiraz, the south part of Iran. Materials and Methods. A total of 80 spice samples including turmeric (n = 20), red pepper (n = 20), black pepper (n = 20), and cinnamon (n = 20) were purchased from markets and cultured on appropriate medium. The isolated fungi were identified. Simultaneously, mycotoxins from spices were extracted with immunoaffinity columns (IAC) and the occurrence of AFs (B1 + B2 + G1 + G2) and OTA was then determined using high-performance liquid chromatography (HPLC) with a fluorescence detector (FD). Result. The results depicted that 40 spice samples were contaminated with AFs and 48 samples with OTA. The highest rate of AFs contamination was related to red pepper, in 80% of which the amount of contamination was excessive than the standard level (>10 μg/kg). All black pepper samples were determined to be contaminated with OTA at over legislation limits of >15 μg/kg. Aspergillus species were the predominant isolated fungi, followed by Penicillium, and Mucor species. Discussion. Regarding the high mycotoxins contamination in spices in the current study, regular effective surveillance and quality control procedures are highly recommended. To achieve this goal, it is necessary to empower food-related laboratories with precise methods of isolation and detection of mycotoxins

    COVID‐19‐associated facial cutaneous mucormycosis superinfection: A potentially life‐threatening disease

    No full text
    Abstract A 49‐year‐old male was involved in an accident and an abdominal computer tomographic examination revealed papillary renal cell carcinoma of the right kidney. During hospitalization, the patient was infected with COVID‐19. In the following COVID‐19 treatment, a black dot developed on the right side of the head and face. Antifungal therapy and surgical debridement were initiated and gradual improvement was observed

    Time to Conquer Fungal Infectious Diseases: Employing Nanoparticles as Powerful and Versatile Antifungal Nanosystems against a Wide Variety of Fungal Species

    No full text
    The development of novel antifungal agents and, in particular, the widespread use of these medications over the course of the past two decades, has had a significant impact on the treatment of fungal infectious diseases. This has resulted in a complete transformation of the treatment of fungal infectious diseases. However, the widespread development of antibiotic resistance has masked the significance of such breakthroughs. Antifungal infection treatment with nanoparticles has been shown to be effective. As a result of their unique characteristics, these substances, in contrast to antibiotics in their purest form, are able to exhibit an increased anti-proliferative capacity while requiring a lower concentration than traditional drugs do in order to achieve the same effect. Decreased drug effectiveness, minimal tissue penetration throughout tissue, restricted tissue penetration, decreased bioavailability, poor drug pharmacokinetics, and low water solubility are some of the major factors contributing to the employment of antifungal medicines in delivery systems. Because of this, one of the primary goals of incorporating antifungal medications into varying sorts of nanoparticles is to reduce the negative effects of the drugs’ inherent qualities. This article provides an overview of the many types of nanoparticles, such as metal, metal oxide, and non-metal oxide nanoparticles, carbon-based nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, solid lipid nanoparticles, nanofibers, antifungal peptides, composites, and ZnO quantum dots, that can be used as antifungal drug delivery systems, as well as the benefits that these nanomaterials have over purified medications
    corecore