85 research outputs found

    Movement behaviour and mortality in invasive and indigenous mussels: resilience and resistance strategies at different spatial scales

    Get PDF
    The responses of indigenous and exotic species to environmental factors can differ across spatial and temporal scales, and it is this difference that determines invasion success and the dynamics of co-existence, In South Africa, the indigenous Perna perna and the invasive Mytilus galloprovincialis are the dominant intertidal mussels on the southern coast, where they co-exist. We compared their movement behaviour over 6 mo at small scales (within and at the edge of mussel beds) and at meso scales (in bays and on the open coast). M, galloprovincialis moved more and had higher mortality rates than did P. perna. For both species, mortality was greater at the edge than at the centre of beds, and on the open coast than in bays. Mussels at the edge of beds moved more than those within beds, but, while this was true for M. galloprovincialis in both habitats, P. perna did not show a position effect on the open coast. Cross-correlation analysis showed that movement rates of both species were correlated with mortality rates after a lag of 1. mo. These results suggest that following mortality events, mussels react to increased availability of space and decreased attachment to neighbours by increasing their movement to reorganise into a safer arrangement. However, P. perna and M. galloprovincialis effectively adopt resistance and resilience strategies, respectively. The effectiveness of each strategy depends on environmental conditions in different habitats, influencing the possibility of co-existence. The higher hydrodynamic stresses experienced in open coast habitats and at the edge of a mussel bed are disadvantageous to the more active, less strongly attached invasive species.Claude Harris Leon Foundation; Rhodes University; National Research Foundation of South Afric

    Biogeographical patterns of endolithic infestation in an invasive and an indigenous intertidal marine ecosystem engineer

    Get PDF
    By altering the phenotypic properties of their hosts, endolithic parasites can modulate the engineering processes of marine ecosystem engineers. Here, we assessed the biogeographical patterns of species assemblages, prevalence and impact of endolithic parasitism in two mussel species that act as important ecosystem engineers in the southern African intertidal habitat, Perna perna and Mytilus galloprovincialis. We conducted large-scale surveys across three biogeographic regions along the South African coast: the subtropical east coast, dominated by the indigenous mussel, P. perna, the warm temperate south coast, where this species coexists with the invasive Mediterranean mussel, M. galloprovincialis, and the cool temperate west coast dominated by M. galloprovincialis. Infestation increased with mussel size, and in the case of M. galloprovincialis we found a significantly higher infestation in the cool temperate bioregion than the warm temperate region. For P. perna, the prevalence of infestation was higher on the warm temperate than the subtropical region, though the difference was marginally non-significant. On the south coast, there was no significant difference in infestation prevalence between species. Endolith-induced mortality rates through shell collapse mirrored the patterns for prevalence. For P. perna, endolith species assemblages revealed clear grouping by bioregions. Our findings indicate that biogeography affects cyanobacteria species composition, but differences between biogeographic regions in their effects are driven by environmental conditions.Agência financiadora Número do subsídio Fundacao para a Ciencia e Tecnologia (FCT-MEC, Portugal) UID/Multi/04326/2019 IF/01413/2014/CP1217/CT0004 South African Research Chairs Initiative (SARChI) of the Department of Science and Technology National Research Foundationinfo:eu-repo/semantics/publishedVersio

    Behind the mask: cryptic genetic diversity of Mytilus galloprovincialis along southern European and northern African shores

    Get PDF
    Morphological uniformity in geographically widespread species may cause genetically distinct entities to pass unnoticed if they can only be detected by molecular approaches. The importance of uncovering such cryptic diversity is prompted by the need to understand the putative adaptive potential of populations along species ranges and to manage biodiversity conservation efforts. In this study, we aim to assess cryptic intraspecific genetic diversity and taxonomic status of the widely distributed intertidal mussel Mytilus galloprovincialis, along Atlantic southwestern (SW) Iberian, Atlantic northwestern (NW) Moroccan and Mediterranean Tunisian shores. By using mitochondrial (16S restriction-fragment length polymorphism) and nuclear (polyphenolic adhesive protein gene, Glu-5') markers, we discovered a more complex taxonomic diversity of M. galloprovincialis than previously known. Both Atlantic and Mediterranean haplogroups of M. galloprovincialis were detected along Atlantic SW Iberian shores along with M. galloprovincialis/edulis hybrids (92.2% Atlantic, 3.9% Mediterranean and 3.9% hybrids). In contrast, NW Moroccan populations consisted solely of Atlantic M. galloprovincialis. The Mediterranean populations did not include M. galloprovincialis/ edulis hybrids, but both Atlantic (58%) and Mediterranean (42%) lineages were detected. Divergent selection between coastlines and/or indirect larval dispersal by human activities may be the drivers of this geographically structured genetic diversity.Fundacao para a Ciencia e Tecnologia (FCT), Portugal; FCT [PTDC/BIA-BEC/103916/2008]; Bilateral Project (Acordo Portugal - Tunisia)info:eu-repo/semantics/publishedVersio

    Photoautotrophic Euendoliths and their complex ecological effects in marine bioengineered ecosystems

    Get PDF
    Photoautotrophic euendolithic microorganisms are ubiquitous where there are calcium carbonate substrates to bore into and sufficient light to sustain photosynthesis. The most diverse and abundant modern euendolithic communities can be found in the marine environment. Euendoliths, as microorganisms infesting inanimate substrates, were first thought to be ecologically irrelevant. Over the past three decades, numerous studies have subsequently shown that euendoliths can colonize living marine calcifying organisms, such as coral skeletons and bivalve shells, causing both sub-lethal and lethal damage. Moreover, under suitable environmental conditions, their presence can have surprising benefits for the host. Thus, infestation by photoautotrophic euendoliths has significant consequences for calcifying organisms that are of particular importance in the case of ecosystems underpinned by calcifying ecosystem engineers. In this review, we address the nature and diversity of marine euendoliths, as revealed recently through genetic techniques, their bioerosive mechanisms, how environmental conditions influence their incidence in marine ecosystems and their potential as bioindicators, how they affect live calcifiers, and the potential future of euendolithic infestation in the context of global climate change and ocean acidificationinfo:eu-repo/semantics/publishedVersio

    Understanding the margin squeeze: differentiation in fitness-related traits between central and trailing edge populations of Corallina officinalis

    Get PDF
    Assessing population responses to climate-related environmental change is key to understanding the adaptive potential of the species as a whole. Coralline algae are critical components of marine shallow water ecosystems where they function as important ecosystem engineers. Populations of the calcifying algae Corallina officinalis from the center (southern UK) and periphery (northern Spain) of the North Atlantic species natural distribution were selected to test for functional differentiation in thermal stress response. Physiological measurements of calcification, photosynthesis, respiration, growth rates, oxygen, and calcification evolution curves were performed using closed cell respirometry methods. Species identity was genetically confirmed via DNA barcoding. Through a common garden approach, we identified distinct vulnerability to thermal stress of central and peripheral populations. Southern populations showed a decrease in photosynthetic rate under environmental conditions of central locations, and central populations showed a decline in calcification rates under southern conditions. This shows that the two processes of calcification and photosynthesis are not as tightly coupled as previously assumed. How the species as whole will react to future climatic changes will be determined by the interplay of local environmental conditions and these distinct population adaptive traits.South African Research Chairs Initiative (SARChI) IF/01413/2014/CP1217/CT0004 University of Portsmouthinfo:eu-repo/semantics/publishedVersio

    Euendolithic infestation of Mussel Shells indirectly improves the thermal buffering offered by Mussel Beds to associated Molluscs, but one size does not fit all

    Get PDF
    Mussel beds form important intertidal matrices that provide thermal buffering to associated invertebrate communities, especially under stressful environmental conditions. Mussel shells are often colonized by photoautotrophic euendoliths, which have indirect conditional beneficial thermoregulatory effects on both solitary and aggregated mussels by increasing the albedo of the shell. We investigated whether euendolithic infestation of artificial mussel beds (Perna perna) influences the body temperatures of four associated mollusc species during simulated periods of emersion, using shell temperature obtained via non-invasive infrared thermography as a proxy. Shell temperatures of the limpet Scutellastra granularis and the chiton Acanthochitona garnoti were higher in non-infested than infested mussel beds during simulated low tides under high solar irradiance and low wind speeds. However, this was not the case for the limpet Helcion pectunculus or the top shell Oxystele antoni. Morphological differences in mollusc shape and colour could, in part, explain this contrast between species. Our results indicated that endolith-induced improvements in humidity and temperature in mussel beds could benefit associated molluscs. The beneficial thermal buffering offered by euendolithic infestation of the mussel beds was effective only if the organism was under heat stress. With global climate change, the indirect beneficial effect of euendolithic infestation for invertebrate communities associated with mussel beds may mitigate intertidal local extinction events triggered by marine heatwaves.National Research Foundation - South Africa 64801; French National Research Agency (ANR) SAN22202;info:eu-repo/semantics/publishedVersio

    Microplastics in commercial bivalves harvested from intertidal seagrasses and sandbanks in the Ria Formosa lagoon, Portugal

    Get PDF
    Through seafood consumption, microplastic (MP) pollution is potentially threatening human health. Commercial bivalves in particular are a cause of major concern because their filter-feeding activity directly exposes them to MP in the water column and they are then ingested by humans. Here, we provide a quantitative and qualitative baseline data on MP content in the soft tissues of three commercially important bivalves (Ruditapes decussatus, Cerastoderma spp. and Polititapes spp.) collected in Ria Formosa lagoon, southern Portugal. The abundance of MPs (items per soft tissue weight) did not significantly differ among species. On average, R. decussatus exhibited the highest MP abundance (on average, 18.4 +/- 21.9 MP items g(-1) WW), followed by Cerastoderma spp. (11.9 +/- 5.5 MP items g(-1) WW) and Polititapes spp. (10.4 +/- 10.4 MP items g(-1) WW). Overall, 88% of the MPs found were synthetic fibres, the majority of which were blue (52%). Size categories >0.1-1 mm and >1-5 mm were the most common (60% and 34% respectively). The most represented polymers were polyethylene (PE) and polystyrene (PS). The unexpectedly high number of MPs recorded in the three commercially exploited species suggests that this semi-closed lagoon system is experiencing a higher anthropogenic pressure than are open coastal systems.Portuguese Foundation for Science and Technology: PTDC/MAR-EST/3223/2014 IF/01413/2014/CP1217/CT0004 UIDB/04326/2020 SFRH/BPD/119344/2016info:eu-repo/semantics/publishedVersio

    Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus

    Get PDF
    Significant effects of recent global climate change have already been observed in a variety of ecosystems, with evidence for shifts in species ranges, but rarely have such consequences been related to the changes in the species genetic pool. The stretch of Atlantic coast between North Africa and North Iberia is ideal for studying the relationship between species distribution and climate change as it includes the distributional limits of a considerable number of both cold- and warm-water species. We compared temporal changes in distribution of the canopy-forming alga Fucus vesiculosus with historical sea surface temperature (SST) patterns to draw links between range shifts and contemporary climate change. Moreover, we genetically characterized with microsatellite markers previously sampled extinct and extant populations in order to estimate resulting cryptic genetic erosion. Results Over the past 30 years, a geographic contraction of the southern range edge of this species has occurred, with a northward latitudinal shift of approximately 1,250 km. Additionally, a more restricted distributional decline was recorded in the Bay of Biscay. Coastal SST warming data over the last three decades revealed a significant increase in temperature along most of the studied coastline, averaging 0.214°C/decade. Importantly, the analysis of existing and extinct population samples clearly distinguished two genetically different groups, a northern and a southern clade. Because of the range contraction, the southern group is currently represented by very few extant populations. This southern edge range shift is thus causing the loss of a distinct component of the species genetic background. Conclusions We reveal a climate-correlated diversity loss below the species level, a process that could render the species more vulnerable to future environmental changes and affect its evolutionary potential. This is a remarkable case of genetic uniqueness of a vanishing cryptic genetic clade (southern clade).Peer Reviewe

    The role of gaping behaviour in habitat partitioning between coexisting intertidal mussels

    Get PDF
    Background Environmental heterogeneity plays a major role in invasion and coexistence dynamics. Habitat segregation between introduced species and their native competitors is usually described in terms of different physiological and behavioural abilities. However little attention has been paid to the effects of behaviour in habitat partitioning among invertebrates, partially because their behavioural repertoires, especially marine benthic taxa, are extremely limited. This study investigates the effect of gaping behaviour on habitat segregation of the two dominant mussel species living in South Africa, the invasive Mytilus galloprovincialis and the indigenous Perna perna. These two species show partial habitat segregation on the south coast of South Africa, the lower and upper areas of the mussel zone are dominated by P. perna and M. galloprovincialis respectively, with overlap in the middle zone. During emergence, intertidal mussels will either keep the valves closed, minimizing water loss and undergoing anaerobic metabolism, or will periodically open the valves maintaining a more efficient aerobic metabolism but increasing the risk of desiccation. Results Our results show that, when air exposed, the two species adopt clearly different behaviours. M. galloprovincialis keeps the shell valves closed, while P. perna periodically gapes. Gaping behaviour increased water loss in the indigenous species, and consequently the risk of desiccation. The indigenous species expressed significantly higher levels of stress protein (Hsp70) than M. galloprovincialis under field conditions and suffered significantly higher mortality rates when exposed to air in the laboratory. In general, no intra-specific differences were observed in relation to intertidal height. The absence of gaping minimises water loss but exposes the invasive species to other stresses, probably related to anoxic respiration. Conclusions Gaping affects tolerance to desiccation, thus influencing the vertical zonation of the two species. Valve closure exposes the invasive species to higher stress and associated energy demands, but it minimizes water loss, allowing this species to dominate the upper mussel zone, where the gaping indigenous P. perna cannot survive. Thus even very simple behaviour can influence the outcome of interactions between indigenous and invasive species

    Love thy neighbour: group properties of gaping behaviour in mussel aggregations

    Get PDF
    By associating closely with others to form a group, an animal can benefit from a number of advantages including reduced risk of predation, amelioration of environmental conditions, and increased reproductive success, but at the price of reduced resources. Although made up of individual members, an aggregation often displays novel effects that do not manifest at the level of the individual organism. Here we show that very simple behaviour in intertidal mussels shows new effects in dense aggregations but not in isolated individuals. Perna perna and Mytilus galloprovincialis are gaping (periodic valve movement during emersion) and non-gaping mussels respectively. P. perna gaping behaviour had no effect on body temperatures of isolated individuals, while it led to increased humidity and decreased temperatures in dense groups (beds). Gaping resulted in cooler body temperatures for P. perna than M. galloprovincialis when in aggregations, while solitary individuals exhibited the highest temperatures. Gradients of increasing body temperature were detected from the center to edges of beds, but M. galloprovincialis at the edge had the same temperature as isolated individuals. Furthermore, a field study showed that during periods of severe heat stress, mortality rates of mussels within beds of the gaping P. perna were lower than those of isolated individuals or within beds of M. galloprovincialis, highlighting the determinant role of gaping on fitness and group functioning. We demonstrate that new effects of very simple individual behaviour lead to amelioration of abiotic conditions at the aggregation level and that these effects increase mussel resistance to thermal stress
    corecore