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Abstract 
Through seafood consumption, microplastic (MP) pollution is potentially threatening human health. 

Commercial bivalves in particular are a cause of major concern because their filter-feeding activity 

directly exposes them to MP in the water column and they are then ingested by humans. Here, we 

provide a quantitative and qualitative baseline data on MP content in the soft tissues of three 

commercially important bivalves (Ruditapes decussatus, Cerastoderma spp. and Polititapes spp.) 

collected in Ria Formosa lagoon, southern Portugal. The abundance of MPs (items per soft tissue 

weight) did not significantly differ among species. On average, R. decussatus exhibited the highest 

MP abundance (on average, 18.4 ± 21.9 MP items g–1 WW), followed by Cerastoderma spp. (11.9 

± 5.5 MP items g–1 WW) and Polititapes spp. (10.4 ± 10.4 MP items g–1 WW). Overall, 88% of the 

MPs found were synthetic fibres, the majority of which were blue (52%). Size categories >0.1–1 mm 

and >1–5 mm were the most common (60% and 34% respectively). The most represented polymers 

were polyethylene (PE) and polystyrene (PS). The unexpectedly high number of MPs recorded in the 

three commercially exploited species suggests that this semi-closed lagoon system is experiencing a 

higher anthropogenic pressure than are open coastal systems.  

 

Keywords 
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1. Introduction 
Microplastic (MP) pollution poses severe threats to marine biodiversity (Barnes et al. 2009; Alomar 

et al. 2016) and it may eventually affect human health through seafood consumption (Smith et al. 

2018). Bivalves are of particular concern because, as filter feeders, they are directly exposed to natural 

and anthropogenically derived microparticles in the water column (Ward et al. 2019a). Despite 

bivalves being able to select food particles at pre- and post- ingestion levels according to particle size, 

shape and surface characteristics (Ward et al. 2019b), the eventual assimilation of non-natural 

particulate matter can cause physical damage to the digestive organs (von Moos et al. 2012). Other 

consequences include neurotoxicity and adverse effects on the immune and reproductive systems 

(Avio et al. 2015; Sussarellu et al. 2016; Ribeiro et al. 2017; Tallec et al. 2018), possibly linked to 

the leaching of plastic chemicals (i.e. bisphenol A, phthalates, polychlorinated biphenyls; Browne et 

al. 2008). In addition to ingestion, recent research highlighted a novel pathway of MP uptake through 

adhesion or direct contact with the soft tissues of the blue mussel Mytilus edulis (Kolandhasamy et 

al. 2018). Regardless of the uptake mechanism, the presence of MP has been reported in wild, farmed 

and sold bivalves worldwide, such as the mussels Mytilus edulis and M. galloprovincialis, and the 

oysters Crassostrea gigas and C. angulata (De Witte et al. 2014; Van Cauwenberghe and Janssen 

2014; Rochman et al. 2015; Li et al. 2015, 2018; Karlsson et al. 2017; Catarino et al. 2018; Digka et 

al. 2018; Murphy 2018). Other than for humans, bivalves are a food source for many marine 

organisms such as gastropods, crustaceans, fishes and marine birds (Dame 2016) and their 

contamination could affect higher trophic levels and lead to bioaccumulation through the food web 

(Farrell and Nelson 2013).  

 

This study aims to provide a baseline assessment of MP abundance and type (visual and 

spectroscopic) in three commercially valuable bivalve species harvested from intertidal areas of Ria 

Formosa coastal lagoon (southern Portugal). This lagoon was declared a Natural Park in 1987, 

recognising it as an important natural wetland with high social, cultural and economic value (Aníbal 

et al. 2019). It comprises a complex network of channels and tidal flats dominated by coastal 

vegetation. Specifically, the back-barrier mudflats are largely colonised by the intertidal seagrass 

Zostera noltei and subtidal seagrasses Cymodocea nodosa and Zostera marina (Cunha et al. 2009). 

The intertidal seagrasses cover ,2900 ha of the total intertidal area (Guimarães et al. 2012), providing 

important ecological functions and ecosystem services, in particular, feeding, breeding and nursery 

habitats, eventually supporting local fisheries (Ribeiro et al. 2006; Guimarães et al. 2012). Bivalve 

exploitation is one of the most important economic activities in Ria Formosa (Bernardino 2000; 
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Guimarães et al. 2012; Oliveira et al. 2013). About 395 ha of the intertidal area is occupied by clam 

or oyster farms (Guimarães et al. 2012; Oliveira et al. 2013), and ~10 000 ha are dedicated to manual 

harvesting of wild clams and cockles (Bernardino 2000). However, despite the recent implementation 

of wastewater treatment plant sites (WWTPs) to reduce the deterioration of the water quality 

(Almeida and Soares 2012), bivalves growing in the intertidal areas of Ria Formosa are exposed to 

pollutants from untreated sewage, industrial discharges, and agriculture and storm-water runoff 

(Bebianno 1995; Veloso et al. 2015).  

 

 
Fig. 1. Location of the three sampling stations (ST1, ST2 and ST3) in Culatra Island (Ria Formosa, 

Portugal) and the four wastewater treatment plants (WWTP1, WWTP2, WWTP3 and WWTP4) in 

the western sector. The average annual volume of wastewater treated is more than hm3 in the period 

between 2010 and 2018 (source: https://www.aguasdoalgarve.pt/). 

 

2. Materials and methods 

2.1. Sample collection 
The study was conducted in the Ria Formosa, a sheltered large mesotidal lagoon located in the 

Algarve, southern Portugal (Fig. 1). Three stations (ST1 36.9965378–7.8307958, ST2 36.9960348–

7.8287888, and ST3 36.9990098–7.8282948), consisting of paired habitats of intertidal Zostera noltei 
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seagrass meadows and sandbanks, were sampled during low tide between April 2017 and January 

2018 in Culatra island (Fig. 1), an area where bivalves are manually harvested by locals. Polititapes 

spp. (golden carpet shell) was found within Z. noltei meadows, whereas Cerastoderma spp. (edible 

cockle) and R. decussatus (grooved carpet shell) were associated with sandbanks. In each habitat, 

sediment cores (n = 5) were taken using a PVC corer (diameter 15.6 cm) at a depth of 20 cm. Each 

core content was sieved in situ and cleaned of sediment by using 1-mm black mesh and transported 

to the laboratory under dark cool conditions (< 3 h). In the laboratory, samples were inspected and 

only individuals confirmed to be alive of the three species of bivalves were transferred to individual 

flasks and kept in –20ºC with their shells, to preserve the soft tissue from external contamination. 

Bivalves were not subjected to depuration period before analysis because we wanted to measure the 

absolute MP abundance, including those particles recently ingested or potentially translocated to the 

tissues (Li et al. 2015). 

 

2.2. Microplastic quantification 
Individuals of the three species were selected using a threshold of wet bodyweight with shell of >0.5 

g, so as to prevent the analysis of excessively small individuals. Wet bodyweight with shell (g WW) 

was measured using a microbalance (0.001 g). For each station and species, samples (n = 3) made of 

one to four individuals were used for the digestion, reaching a total of nine samples per species. In 

total, 20 individuals for Cerastoderma spp., 19 individuals for R. decussatus and 25 for Polititapes 

spp. were processed across all stations. Bivalves were pooled maintaining a similar total biomass per 

sample and an appropriate volume to solution ratio to ensure a complete digestion of the organic 

matter and to avoid filter clogging during filtration. Individuals in each sample were rinsed with pre-

filtered ultrapure water (purified by an Elix (R) equipment and filtered through a GF/C Whatman 1.2 

mm pore size) to remove potential external contaminants adhered to the shells. Shells were opened, 

and soft tissue was extracted and weighted (g WW) using a microbalance (0.001 g), then rinsed again 

with pre-filtered ultrapure water. Soft wet-tissue biomasses ranged from 0.57 to 0.92 g WW in 

Cerastoderma spp., from 0.37 to 0.89 g WW in R. decussatus and from 0.51 to 1.75 g WW in 

Polititapes spp. 

 

Soft tissue digestions and MP extractions were conducted using an adapted protocol from Dehaut et 

al. (2016). Each composite sample (i.e. replicate, one to four individuals) was placed in a 250 mL 

flask and 1.8 M KOH solution was added to digest the organic matter. A variable number of 

individuals is often used in digestions to ensure comparable biomass among replicates (e.g. Li et al. 
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2015, 2016; Teng et al. 2019). The solution was stirred until complete digestion (i.e. 2 min) and 

placed in the oven at 60ºC for 24 h. After incubation, the whole solution was filtered through a 

Whatman GF/C glass-fibre filter (diameter 47 mm, 1.2 mm pore size), while still warm, by using a 

vacuum system. The resulting filters were placed in glass Petri dishes with lid, dried in the oven at 

40ºC for 24 h, then examined for the presence of MPs under a stereomicroscope (ZEISS SteREO 

Discovery V8). Filters were kept sealed when not in use to avoid external contamination. Microplastic 

items were counted and measured (mm) using the software Image J (https:// 

imagej.nih.gov/ij/index.html; Schneider et al. 2012). Microplastics were classified according to their 

colours (blue, violet, yellow, red, green and colourless white) and shape (fibres, granules, foam, films 

and fragments; Gündoğdu and Çevik 2017). This was undertaken because high colour variability is a 

reliable proxy indicator of high variation in polymer composition and origin (Blettler et al. 2017). 

Further, abundant MP white colouration is indicative of pronounced degradation processes (e.g. UV-

intense solar radiation; Mbedzi et al. 2020). 

 

Fibres were measured along their length, whereas foams and films were measured for their longest 

dimension. Every plastic particle was assigned to one of the following three distinct size classes of 

maximum length (Abidli et al. 2019): >0.01–0.1 mm, >0.1–1 mm and >1–5 mm. MP abundance was 

expressed as number of items per wet soft-tissue weight (items g–1 WW). Percentage of occurrence 

of MPs was obtained as the percentage of composite samples in which MPs were found.  

 

The entire laboratory analysis for MP determination was conducted under a laminar flow cabinet. To 

limit post-sampling contamination, gloves and 100% cotton laboratory coats were worn during the 

process. In addition, all equipment used was non-plastic (i.e. glass or metal), and was rinsed twice 

with pre-filtered ultrapure water between each sample extraction. To account for possible 

contamination, one procedural (blank) control (containing KOH solution only) was performed in 

parallel to each digestion batch, yielding an average procedural contamination of 1.8 ± 1.3 (mean ± 

s.d., n = 9) MPs.  

 

Data of MP abundance were log10-transformed to meet the normality and homoscedasticity 

assumptions (Shapiro–Wilk and Fligner–Killeen tests respectively). Differences among species in the 

abundance of MPs were tested with a one-way ANOVA, using the MP items per unit of biomass as 

the response variable and species (3 levels) as the fixed factor. Data analysis was performed using 

the R programming language R 3.6.1 (R Core Team 2019).  
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2.3. Polymer identification 
To obtain information on polymer composition and to validate MP identification, micro Raman 

spectroscopy was performed (JASCO NRS-4100, Laser Raman Spectrometer) on a subsample (n = 

15) for each species (16.3% representativeness on total number of MPs). The laser beam (532 or 785 

nm) was focused on the sample surface by a microscope objective. The availability of objectives with 

different magnification and numerical aperture (5 x /0.10 N.A., 20 x /0.40 N.A., and 100 x /0.90 N.A.) 

provided the possibility to perform both spatially averaged and high-resolution analyses. The laser 

power was adjusted according to the characteristics of the sample so as to obtain a suitably high 

Raman signal, yet preventing any damage. Spectra at different points of the sample surface were 

acquired to verify its homogeneity. To identify the polymer composition, the spectra were then 

compared with those of the most common polymers included in a home-made spectral database 

(Supplementary material Fig. S1, available at the journal’s website). When identification through 

Raman analysis was ambiguous or not possible, usually owing to intense photoluminescence 

background, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) was 

used (JASCO FT/IR-4700). Several recent studies have highlighted the importance of Raman and 

FTIR spectroscopy to discriminate among natural items for synthetic polymers and, thus, to avoid 

overestimation of the MP concentration (e.g. Wesch et al. 2016). 

 

3. Results 
Microplastics were present in all samples and species (Table 1). Abundance of MPs found in the soft 

tissues of the bivalves was similar across species (one-way ANOVA, F-value = 0.459, P =0.637), 

with average (mean ± s.d., n = 9) values of 18.4 ± 21.9 items g–1 WW for R. decussatus, 11.9 ± 5.5 

for Cerastoderma spp., and 10.4 ± 10.4 MP items g–1 WW for Polititapes spp. (Table 1). Fibres were 

the most prevalent plastic category observed, accounting for 88% of total debris (n = 242) found in 

the three species. Foams and films formed the remaining 9.5% and 2.5% respectively (Fig. 2a). 

Neither fragments nor plastic pellets (nurdles) were detected. Among the three species, Cerastoderma 

spp. exhibited the highest concentration of fibres (94%) and the lowest of foams (1%), whereas 

Polititapes spp. had the highest number of foams (16%) and the lowest of fibres (82%). The lowest 

concentration of MP films was observed in R. decussatus (1%; Fig. 2a). 

 

Among all the fibres identified within the three species, blue (51.7%), white (21.9%) and violet 

(14.9%) were the dominant colours, whereas the least represented colours were red (5.4%; Fig. 2b) 
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and green (0.4%), the latter with only one item detected across all samples. Size of MP items ranged 

from 0.037 mm to 4.7 mm in length. Size categories >0.1–1 mm and >1–5 mm were the most 

common, comprising 60.4% and 33.8% of the total MP abundance respectively (Fig. 2c). 

 

Spectroscopy characterisation showed that 2% of putatively synthetic items were indeed of natural 

origin (e.g. keratin and cellulose) and these were discarded from the data. In R. decussatus and in 

Polititapes spp., polyethylene (PE) and polystyrene (PS) were present in equal proportions, followed 

by polypropylene (PP) and polyethylene terephthalate (PET). Microplastics found in Cerastoderma 

spp. were predominantly PE, whereas PS and PP were represented in similar proportions (Table 1). 

Overall, the most represented polymer was PE, accounting for 40% of total MPs found, followed by 

PS (31%), PP (20%) and PET (9%; Fig. 2d).  

 

Table 1. Frequency of occurrence (%; i.e. the proportion of affected animals) of microplastics (MPs) 

in the samples of the three commercial bivalve species, their MP abundance as items per gram wet 

weight of animal tissue (mean ± s.d., n = 9), total number of MP items found in each species, and the 

percentage of occurrence for each polymer type of all MPs found in each species. PE, polyethylene; 

PS, polystyrene; PET, polyethylene terephthalate; PP, polypropylene. 

 

 

Species Frequency of 
occurrence (%) 

MP abundance 
(items g-1 WW) 

Total MP 
items 

PE 
(%) 

PS 
(%) 

PET 
(%) 

PP 
(%) 

Ruditapes 

decussatus 

100 18.4 ± 21.9 95 33.3 33.3 13.3 20 

Cerastoderma 

spp. 

100 11.9 ± 5.5 80 46.7 20 6.7 26.7 

Polititapes spp. 100 10.4 ± 10.4 100 40 40 6.7 13.3 
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Fig. 2. (a) Percentage of occurrence of microplastics (MPs) by shape category in the three bivalve 

species (Ruditapes decussatus, Polititapes spp., Cerastoderma spp.); (b) percentage of occurrence of 

fibres by colour category and species; (c) percentage of occurrence of MP size classes per species 

and in total; and (d) percentage of occurrence of MPs by polymer category. PE, polyethylene; PS, 

polystyrene; PET, polyethylene terephthalate; and PP, polypropylene.  

 

4. Discussion 
Plastic pollution has now become a global concern and plastic litter entering the ocean threatens 

numerous organisms (Wilcox et al. 2016). In particular, filter feeders because they filter a large 

volume of seawater, are among the most severely affected organisms by microplastics (Gonçalves et 

al. 2019). For example, literature increasingly shows that MPs are ingested by filter-feeding 

organisms, such as sea cucumbers, lungworms and bivalves (Kinjo et al. 2019). Critically, bivalves, 

being a major food source for various predators, often act as vectors of MP to higher trophic levels 

in ecosystems (Farrell and Nelson 2013), including humans (Li et al. 2015; Smith et al. 2018). This 

study has provided preliminary quantitative and qualitative baseline data on MP content in the soft 

tissues of three commercially important bivalves collected intertidally in the Ria Formosa lagoon, 

southern Portugal. Overall, we found that the three species assessed (R. decussatus, Polititapes spp. 

and Cerastoderma spp.) were contaminated with a similar number of MPs, ranging from 10.4 ± 10.4 
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to 18.4 ± 21.9 items g–1 WW, the majority of the particles being fibres (88%), blue in colour (52%), 

in the range of 0.1–1 mm, and made of polyethylene (PE, 40%) and polystyrene (PS, 31%). 

 

The present work has highlighted higher concentrations of MPs in bivalves than have studies 

conducted in other systems (Table 2). For example, MP concentrations here observed in R. decussatus 

are an order of magnitude higher than those reported by Abidli et al. (2019; 1.4 items g–1 WW). 

Relatively low MP concentrations were also reported for the Manila clams, Ruditapes philippinarum, 

from different regions; Davidson and Dudas (2016) detected an average of 0.9 ± 0.9 items g–1 WW 

in Baynes Sound (British Columbia), Li et al. (2015) reported ~3 MP items g–1 WW in China, and 

Cho et al. (2019) observed an average of 0.34 ± 0.31 items g–1 WW in South Korea. Similarly, the 

MP concentrations that we observed for Cerastoderma spp. (11.9 ± 5.5 MPs items g–1 WW) are, on 

average, 94% higher than those in the common cockle (Cerastoderma edule) collected in France 

(Hermabessiere et al. 2019). 

 

Table 2. Comparison among microplastic abundances (items g–1 WW of animal tissue; mean ± s.d.) 

in different bivalve species collected from different regions worldwide. n.a., Not available. 

 
Species Location MP items 

(g-1 WW) 

Reference 

Ruditapes decussatus  Lagoon of Bizerte (northern Tunisia)  1.4 ± n.a. Abidli et al. (2019) 

Cerastoderma edule  Channel coastlines (France) 0.74 ± 0.35 Hermabessiere et al. (2019) 

Mytilus edulis Channel coastlines (France) 0.25 ± 0.16 Hermabessiere et al. (2019) 

M. edulis  French Brittany  0.36 ± 0.07 Van Cauwenberghe and Janssen (2014)  

M. galloprovincialis  China ~2 ± n.a. Li et al. (2015) 

Ruditapes philippinarum  China ~3 ± n.a. Li et al. (2015) 

R. philippinarum Baynes Sound (British Columbia)  0.9 ± 0.9 Davidson and Dudas (2016) 

R. philippinarum  South Korea 0.34 ± 0.31 Cho et al. (2019) 

 

Microplastic occurrence has been documented in a variety of other bivalve species. For instance, in 

mussels, the average MP concentrations range between 0.25 ± 0.16 items g–1 WW along the Channel 

coastline (Hermabessiere et al. 2019) and 0.36 ± 0.07 items g–1 WW in French Brittany (Van Cauwen- 

berghe and Janssen 2014) and ~2 ± 1 MP items g–1 WW in China (Li et al. 2015). Despite our results 

highlighting high levels of MPs in the Ria Formosa bivalves, a recent work investigating MP pollution 

in the sediment of vegetated and unvegetated habitats within the lagoon showed low MP densities, 
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namely, one order of magnitude lower than densities reported in other studies conducted in similar 

systems (Cozzolino et al. 2020). Such apparent discrepancies among MP densities in bivalves and in 

sediment could be the result of the high accumulation efficiency and retention of bivalves. 

 

In our study, despite lack of significant differences among species, the higher levels (on average 35% 

and 43.5% more than in Cerastoderma spp. and Polititapes spp. respectively) of MP contamination 

found in R. decussatus is in agreement with previous works reporting this species as the most 

contaminated of the six molluscs harvested from the lagoon of Bizerte, Tunisia (Abidli et al. 2019). 

It is difficult to pinpoint the drivers of the higher ingestion rates in this species; however, experiments 

conducted with R. decussatus from the Ria Formosa have shown that this species is able to maintain 

a higher filtration rate than coexisting suspension feeders across a wide range of current velocities 

(Sobral and Widdows 2000). Laboratory studies taking multiple physiological parameters into 

consideration will be key to address interspecific variations in MP ingestion. 

 

In addition to organisms’ features, there is an increasing literature on the determinant role of habitats 

in affecting MPs ingested by shellfish (Murphy et al. 2017). For example, significant variation of MP 

features exists between shellfish growing in water and those growing in sediment (Ding et al. 2020). 

The bivalve species assessed here grow in the sediment, yet in contrasting types. Whereas individuals 

of Cerastoderma spp. and R. decussatus were collected from sandbanks, those of Polititapes spp. 

were sampled from seagrass meadows. Recent evidence on plastic accumulation in the sediment of 

unvegetated and vegetated habitats (including the seagrass Z. noltei) in the same geographical area as 

this study showed that MPs occur in similar concentrations (Cozzolino et al. 2020). However, 

seagrasses have the potential of filtering fibres out of the water column by adhesion to their leaves 

(Goss et al. 2018; Cozzolino et al. 2020; Seng et al. 2020). This could have an effect on the MP 

exposure to the organisms living within the sediment of the seagrass meadows, in comparison to those 

inhabiting unvegetated areas. Further research and direct testing would be needed to understand the 

effects of habitat type on the MP exposure and accumulation of bivalve species and other filter-

feeders.  

 

In our study, fibres were the category most represented, which is in agreement with previous studies 

on R. decussatus (91%) and R. philippinarum (90%; Abidli et al. 2019; Davidson and Dudas 2016) 

and on the cockle Cerastoderma edule (Hermabessiere et al. 2019). Other studies have described 

similar high fibre concentrations in several bivalves, in particular Chlamys ferreris and Mytilus 
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galloprovincialis of the northern Ionian Sea (84%; Digka et al. 2018) and in Saccostrea cucullata of 

China (69%; Li et al. 2018). Regarding the MP size categories, the outcomes of our investigation are 

consistent with previous studies assessing MP concentrations in commercial bivalves from other 

regions. In Abidli et al. (2019) and Digka et al. (2018), the most represented microplastic size classes 

were 0.1–1 mm and 0.1–0.5 mm respectively. Critically, evidence shows that each size and colour of 

MPs has a different detection probability; items with inconspicuous colouring (e.g. white) and size 

(<300 mm) may be largely underestimated (Nel et al. 2019).  

 

The overall high concentrations of fibres observed in our study are likely to be linked to anthropogenic 

factors such as the wastewater and domestic discharges in the lagoon. Despite removal efficiency of 

wastewater treatment facilities can be very high (95–99%), municipal wastewater effluents remain a 

conspicuous pathway for MPs to reach aquatic systems (Murphy et al. 2016, and references therein). 

Four WWTPs are located in the western side of the Ria Formosa lagoon (Fig. 1), the effluents of 

which may represent a significant risk of water contamination depending on treatment efficiency, 

volume of effluent and presence of leakages in the network (Kay et al. 2008; Pedro et al. 2008; 

Pommepuy et al. 2004; Riou et al. 2007). According to the models of water and particle circulation 

of Ria Formosa (Fabia ̃oetal.2016) and in terms of proximity to the three sampled stations, the most 

relevant inputs of discharge are the WWTPs of Olhão–Nascente (PE 32.216; Águas do Algarve) and 

Faro–Nascente (PE 87.320; European Commission Urban Waste Water, 

https://uwwtd.eu/Portugal/agglomeration/ptagl003/2016). Importantly, the particles released from 

Olhão–Nascente show a mean residence time within the lagoon system of ~7 days (being concentrated 

between Culatra and Fuseta islands), before being washed out through the Armona inlet (Fabião et 

al. 2016). The particles discharged from Faro–Nascente remain longer in the system (~18 days) 

because of a complex interconnectivity among channels in the western area of the lagoon (Fabião et 

al. 2016). Such high retention times can result in an extended particle contamination exposure for the 

ecosystems in the Ria Formosa. 

 

The island of Culatra, where this study took place, represents an important fishing ground for the 

local community and recent evidence shows that fishing is a conspicuous source of plastic pollution 

at this site (Velez et al. 2020). Fishing gears that include nets, ropes and traps, mostly made of nylon, 

polyethylene (PE) and polyester (Kanehiro 2004), are lost or discarded during fishing activities and, 

after long-term exposition to the physical-chemical pressures of the aquatic environment, can result 

in fibrous pollution (Browne et al. 2011). In agreement with previous works on commercial bivalves 
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(e.g. Li et al. 2015; Cho et al. 2019), PE is the most abundant polymer observed in this study. 

Although no fragments were identified in the study, their occurrence has been reported in bivalves, 

with proportions ranging from 5–6% (Davidson and Dudas 2016; Abidli et al. 2019) to 15–20% 

(Digka et al. 2018; Li et al. 2018).  

 

5. Conclusions 
This study has provided the first evidence of MP contamination in bivalves living in Ria Formosa 

lagoon (Portugal), thus setting a baseline to evaluate future changes. Overall, it highlighted high 

concentrations of microplastics in cockles (Cerastoderma spp.) and clams (Ruditapes decussatus and 

Polititapes spp.) from this lagoon. Further research taking into account species ecological and 

physiological traits contributing to MP ingestion is needed to provide a more complete understanding 

of species’ vulnerability to MP pollution in the lagoon and to underline potential differences among 

species. In addition, as these bivalves are commonly consumed as seafood, the potential for 

bioaccumulation and biomagnification of chemicals should be further addressed to infer risks for 

human health.  
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