362 research outputs found

    The positive effect on ketamine as a priming adjuvant in antidepressant treatment.

    Get PDF
    Ketamine is an anesthetic with antidepressant properties. The rapid and lasting effect of ketamine observed in preclinical and clinical research makes it a promising therapeutic to improve current major depression (MD) treatment. Our work intended to evaluate whether the combined use of classic antidepressants (imipramine or fluoxetine) and ketamine would improve the antidepressant response. Using an animal model of depressive-like behavior, we show that the addition of ketamine to antidepressants anticipates the behavioral response and accelerates the neuroplastic events when compared with the use of antidepressants alone. In conclusion, our results suggest the need for a reappraisal of the current pharmacological treatment of MD.This work is supported by the Fundação para a Ciência e Tecnologia (FCT) grant SFRH/SINTD/60126/200

    Vocal Accuracy and Neural Plasticity Following Micromelody-Discrimination Training

    Get PDF
    Recent behavioral studies report correlational evidence to suggest that non-musicians with good pitch discrimination sing more accurately than those with poorer auditory skills. However, other studies have reported a dissociation between perceptual and vocal production skills. In order to elucidate the relationship between auditory discrimination skills and vocal accuracy, we administered an auditory-discrimination training paradigm to a group of non-musicians to determine whether training-enhanced auditory discrimination would specifically result in improved vocal accuracy.We utilized micromelodies (i.e., melodies with seven different interval scales, each smaller than a semitone) as the main stimuli for auditory discrimination training and testing, and we used single-note and melodic singing tasks to assess vocal accuracy in two groups of non-musicians (experimental and control). To determine if any training-induced improvements in vocal accuracy would be accompanied by related modulations in cortical activity during singing, the experimental group of non-musicians also performed the singing tasks while undergoing functional magnetic resonance imaging (fMRI). Following training, the experimental group exhibited significant enhancements in micromelody discrimination compared to controls. However, we did not observe a correlated improvement in vocal accuracy during single-note or melodic singing, nor did we detect any training-induced changes in activity within brain regions associated with singing.Given the observations from our auditory training regimen, we therefore conclude that perceptual discrimination training alone is not sufficient to improve vocal accuracy in non-musicians, supporting the suggested dissociation between auditory perception and vocal production

    Morbidity, outcomes and cost-benefit analysis of wildlife rehabilitation in Catalonia (Spain)

    Get PDF
    Background There are few studies of careful examination of wildlife casualties in Wildlife Rehabilitation Centers. These studies are essential for detecting menaces to wild species and providing objective criteria about cost-benefit of treatments in those centers. The release rate is considered the main outcome indicator, but other parameters such as length of stay at the center and a cost-benefit index expressed as number of released animals per euro and day, could be used as reliable estimators of the rehabilitation costs. Methodology A retrospective study based on 54772 admissions recorded from 1995-2013 in the database of the Wildlife Rehabilitation Center of Torreferrussa (Catalonia, NW Spain) assessed the morbidity, outcomes and cost-benefits of the rehabilitation practices. Results Three hundred and two species were included: 232 birds (n = 48633), 37 mammals (n = 3293), 20 reptiles (n = 2705) and 13 amphibians (n = 141). The most frequent causes of admission were: 39.8% confiscation of protected species (89.4% passerines), 31.8% orphaned young animals (35.3% swifts, 21.7% diurnal raptors and owls) and 17.4% trauma casualties (46.7% raptors and owls). The highest proportion of releases was found in the captivity confiscation category [87.4% passerines (median time of stay: 12 days)], followed by the orphaned category [78% owls (66 days), 76.5% diurnal birds of prey (43 days), 75.6% hedgehogs (49 days), 52.7% swifts (19 days) and 52% bats (55 days)]. For the trauma group, 46.8% of releases were hedgehogs (44 days) and 25.6% owls (103 days). As regards the cost-benefit index, the trauma casualties and infectious diseases had the worse values with 1.3 and 1.4 released animals/euro/day respectively, and were particularly low in raptors, waders, marine birds and chiroptera. On the contrary, captivity (4.6) and misplacement (4.1) had the best index, particulary in amphibian, reptiles and passerines. Conclusions/significance Cost-benefit studies including the release rate, the time of stay at the center and the costbenefit index should be implemented for improving management efficiency of the Wildlife Rehabilitation Centers

    Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The motor-driven predictions about expected sensory feedback (efference copies) have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs) were recorded in response to upward pitch shift stimuli (PSS) with five different magnitudes (0, +50, +100, +200 and +400 cents) at voice onset during active vocal production and passive listening to the playback.</p> <p>Results</p> <p>Results indicated that the suppression of the N1 component during vocal production was largest for unaltered voice feedback (PSS: 0 cents), became smaller as the magnitude of PSS increased to 200 cents, and was almost completely eliminated in response to 400 cents stimuli.</p> <p>Conclusions</p> <p>Findings of the present study suggest that the brain utilizes the motor predictions (efference copies) to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds.</p

    Globotriaosylsphingosine Accumulation and Not Alpha-Galactosidase-A Deficiency Causes Endothelial Dysfunction in Fabry Disease

    Get PDF
    BACKGROUND: Fabry disease (FD) is caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA) resulting in the accumulation of globotriaosylsphingosine (Gb3) in a variety of tissues. While GLA deficiency was always considered as the fulcrum of the disease, recent attention shifted towards studying the mechanisms through which Gb3 accumulation in vascular cells leads to endothelial dysfunction and eventually multiorgan failure. In addition to the well-described macrovascular disease, FD is also characterized by abnormalities of microvascular function, which have been demonstrated by measurements of myocardial blood flow and coronary flow reserve. To date, the relative importance of Gb3 accumulation versus GLA deficiency in causing endothelial dysfunction is not fully understood; furthermore, its differential effects on cardiac micro- and macrovascular endothelial cells are not known. METHODS AND RESULTS: In order to assess the effects of Gb3 accumulation versus GLA deficiency, human macro- and microvascular cardiac endothelial cells (ECs) were incubated with Gb3 or silenced by siRNA to GLA. Gb3 loading caused deregulation of several key endothelial pathways such as eNOS, iNOS, COX-1 and COX-2, while GLA silencing showed no effects. Cardiac microvascular ECs showed a greater susceptibility to Gb3 loading as compared to macrovascular ECs. CONCLUSIONS: Deregulation of key endothelial pathways as observed in FD vasculopathy is likely caused by intracellular Gb3 accumulation rather than deficiency of GLA. Human microvascular ECs, as opposed to macrovascular ECs, seem to be affected earlier and more severely by Gb3 accumulation and this notion may prove fundamental for future progresses in early diagnosis and management of FD patients

    Manipulation of Plant Defense Responses by the Tomato Psyllid (Bactericerca cockerelli) and Its Associated Endosymbiont Candidatus Liberibacter Psyllaurous

    Get PDF
    Some plant pathogens form obligate relationships with their insect vector and are vertically transmitted via eggs analogous to insect endosymbionts. Whether insect endosymbionts manipulate plant defenses to benefit their insect host remains unclear. The tomato psyllid, Bactericerca cockerelli (Sulc), vectors the endosymbiont “Candidatus Liberibacter psyllaurous” (Lps) during feeding on tomato (Solanum lycopersicum L.). Lps titer in psyllids varied relative to the psyllid developmental stage with younger psyllids harboring smaller Lps populations compared to older psyllids. In the present study, feeding by different life stages of B. cockerelli infected with Lps, resulted in distinct tomato transcript profiles. Feeding by young psyllid nymphs, with lower Lps levels, induced tomato genes regulated by jasmonic acid (JA) and salicylic acid (SA) (Allene oxide synthase, Proteinase inhibitor 2, Phenylalanine ammonia-lyase 5, Pathogenesis-related protein 1) compared to feeding by older nymphs and adults, where higher Lps titers were found. In addition, inoculation of Lps without insect hosts suppressed accumulation of these defense transcripts. Collectively, these data suggest that the endosymbiont-like pathogen Lps manipulates plant signaling and defensive responses to benefit themselves and the success of their obligate insect vector on their host plant

    Mifepristone Prevents Stress-Induced Apoptosis in Newborn Neurons and Increases AMPA Receptor Expression in the Dentate Gyrus of C57/BL6 Mice

    Get PDF
    Chronic stress produces sustained elevation of corticosteroid levels, which is why it is considered one of the most potent negative regulators of adult hippocampal neurogenesis (AHN). Several mood disorders are accompanied by elevated glucocorticoid levels and have been linked to alterations in AHN, such as major depression (MD). Nevertheless, the mechanism by which acute stress affects the maturation of neural precursors in the dentate gyrus is poorly understood. We analyzed the survival and differentiation of 1 to 8 week-old cells in the dentate gyrus of female C57/BL6 mice following exposure to an acute stressor (the Porsolt or forced swimming test). Furthermore, we evaluated the effects of the glucocorticoid receptor (GR) antagonist mifepristone on the cell death induced by the Porsolt test. Forced swimming induced selective apoptotic cell death in 1 week-old cells, an effect that was abolished by pretreatment with mifepristone. Independent of its antagonism of GR, mifepristone also induced an increase in the percentage of 1 week-old cells that were AMPA+. We propose that the induction of AMPA receptor expression in immature cells may mediate the neuroprotective effects of mifepristone, in line with the proposed antidepressant effects of AMPA receptor potentiators

    Evidence for Shared Cognitive Processing of Pitch in Music and Language

    Get PDF
    Language and music epitomize the complex representational and computational capacities of the human mind. Strikingly similar in their structural and expressive features, a longstanding question is whether the perceptual and cognitive mechanisms underlying these abilities are shared or distinct – either from each other or from other mental processes. One prominent feature shared between language and music is signal encoding using pitch, conveying pragmatics and semantics in language and melody in music. We investigated how pitch processing is shared between language and music by measuring consistency in individual differences in pitch perception across language, music, and three control conditions intended to assess basic sensory and domain-general cognitive processes. Individuals’ pitch perception abilities in language and music were most strongly related, even after accounting for performance in all control conditions. These results provide behavioral evidence, based on patterns of individual differences, that is consistent with the hypothesis that cognitive mechanisms for pitch processing may be shared between language and music.National Science Foundation (U.S.). Graduate Research Fellowship ProgramEunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant 5K99HD057522
    corecore