38 research outputs found

    Ladrillos térmicos de botella de plástico rellenados con arcilla y poliestireno para viviendas alto-andinas Cerro de Pasco 2021

    Get PDF
    En la siguiente investigación “Ladrillos térmicos de botellas de plástico rellenados con arcilla y poliestireno para viviendas Altoandinas cerro de Pasco 2021”. Se planteó como objetivo general determinar si los ladrillos de botella de plástico rellenados con arcilla y poliestireno son aptos como alternativa para el aislamiento térmico y resistencia a la compresión. Se llevó a cabo el ensayo de la resistencia a compresión de los materiales a utilizar (ladrillos térmicos). Asimismo, se compararon la resistencia y sus propiedades con el ladrillo convencional que utilizan en las zonas altoandinas para la construcción de sus viviendas. Por otro lado, se analizó la temperatura de los ladrillos, realizando un prototipo utilizando las herramientas necesarias que sirvieron como apoyo para determinar si son térmicas con respecto a las demás viviendas construidas en la zona con materiales comune

    A preliminary study on the diagnosis of coral reef healthiness and establishment of coral replenishment technology

    Get PDF
    Abstract only.Field surveys for coral reef through line-intercept-transect (LIT) and temperature profiling using data-loggers were done at three layers of 5, 10, and 15 m depths in coral reef areas, Nogas Island, Anini-y, Antique, Philippines. Preliminary data based on the LIT survey showed that both coverages of substrates by any type of organism and by Scleractinia decreased in the deeper layers. For Scleractinia, Porites sp. occurred predominantly in all the depth layers with the occurrence decreasing with depth. Temperature fluctuation was largest in the 5 m depth layer, where effects of tidal level were also confirmed. While the average temperature decreased with depth, this did not differ beyond 1°C between 5 and 15 m layers during November 2012 to March 2013. Fragments of the Porites sp. and Acropora sp. were sampled and transferred to aquaria at the Tigbauan Main Station of SEAFDEC/AQD. Acropora sp. sampled from the deepest layer alone showed bleaching and thereafter, a part of the fragments regained the color. Experimental trials to clarify the effects of ocean acidification and warming on the health of the coral using the live fragments of Porites sp. showed decreasing trends in both photosynthetic rates and daily growth rates in acidic condition (pH = 7.6), while decrease of zooxanthellae density was observed under warmer conditions (31°C ) for one month. A new methodology for the determination of density of zooxanthellae was established using the fragments of Porites sp. In this study, the need for studies on several coral communities as well as further basic research on coral biology, particularly, responses to the changing environments are discussed for diagnosis of coral reef healthiness and establishment of effective coral replenishment technology

    First Insights into Non-invasive Administration Routes for Non-viral Gene Therapy

    Get PDF
    Gene delivery has attracted increasing interest as a highly promising therapeutic method to treat various diseases, including both genetic and acquired disorders. However, its clinical application is still hampered by the lack of safe and effective gene delivery techniques, as well as by the need of non-invasive routes of administration in gene delivery platforms. Among the different approaches used to transport nucleic acids into target cells, non-viral vectors represent promising and safer alternatives to viruses. Non-invasive administration routes are currently being studied, such as intranasal administration to target the brain, topical retinal administration for ocular diseases and aerosolized formulations for inhalation for the treatment of pulmonary diseases. Reasonable evidence suggests that future gene delivery systems might be based on effective non-viral vectors administered through non-invasive routes, which would constitute a safe, easy to produce, cheap and customizable alternative to the current viral gene delivery platforms. In this review, after briefly introducing the basis of gene therapy, we discuss the up-to-date and possible future strategies to improve DNA transfection efficiency using non-viral vectors and focusing on the non-invasive routes of administration

    Kanabinoideoak: onuragarriak ala kaltegarriak?

    Get PDF
    Kanabinoideoak konposatu psikoaktiboen talde bat da; munduan gehien kontsumitzen diren drogen artean daude eta beraien kontsumoa areagotuz doa gaur eguneko gizartean. Konposatuok hainbat funtzio biologikoren erregulazioan garrantzitsuak direla ikusi da; adibidez, ikasketa- eta oroimen-prozesuetan parte hartzen dute. Jatorri kanabinoideoa duten konposatuak funtzio biologiko horiekin harremanetan dauden patologien tratamendurako erabilgarriak izan daitezkeela uste da, hala nola, minaren, Parkisonaren, Huntingtonen gaixotasunaren, esklerosi anizkoitzaren, tumoreen eta abarren tratamendurako. Hori guztia dela eta, kanabinoideoen gaitasun terapeutikoa ikertzen ari da egun.Hala ere, aipatzekoa da kanabinoideoek albo-ondorio garrantzitsuak ere eragin ditzaketela, adibidez, immunitate-sistemaren ahalmena murrizten dute eta jasankortasuna eta menpekotasuna sortzen dute..

    Kanabinoideoak: onuragarriak ala kaltegarriak?

    Get PDF
    Kanabinoideoak konposatu psikoaktiboen talde bat da; munduan gehien kontsumitzen diren drogen artean daude eta beraien kontsumoa areagotuz doa gaur eguneko gizartean. Konposatuok hainbat funtzio biologikoren erregulazioan garrantzitsuak direla ikusi da; adibidez, ikasketa- eta oroimen-prozesuetan parte hartzen dute. Jatorri kanabinoideoa duten konposatuak funtzio biologiko horiekin harremanetan dauden patologien tratamendurako erabilgarriak izan daitezkeela uste da, hala nola, minaren, Parkisonaren, Huntingtonen gaixotasunaren, esklerosi anizkoitzaren, tumoreen eta abarren tratamendurako. Hori guztia dela eta, kanabinoideoen gaitasun terapeutikoa ikertzen ari da egun.Hala ere, aipatzekoa da kanabinoideoek albo-ondorio garrantzitsuak ere eragin ditzaketela, adibidez, immunitate-sistemaren ahalmena murrizten dute eta jasankortasuna eta menpekotasuna sortzen dute..

    The role of helper lipids in the intracellular disposition and transfection efficiency of niosome formulations for gene delivery to retinal pigment epithelial cells

    Get PDF
    In this work, we carried out a comparative study of four different niosome formulations based on the same cationic lipid and non-ionic tensoactive. The niosomes prepared by oil-in-water emulsion technique (o/w) only differed in the helper lipid composition: squalene, cholesterol, squalane or no helper lipid. Niosomes and nioplexes elaborated upon the addition of pCMS-EGFP reporter plasmid were characterized in terms of size, zeta potential and polydispersity index. The capacity of the niosomes to condense, release and protect the DNA against enzymatic degradation was evaluated by agarose gel electrophoresis. In vitro experiments were carried out to evaluate transfection efficiency and cell viability in retinal pigment epithelial cells. Moreover, uptake and intracellular trafficking studies were performed to further understand the role of the helper lipids in the transfection process. Interestingly, among all tested formulations, niosomes elaborated with squalene as helper lipid were the most efficient transfecting cells. Such transfection efficiency could be attributed to their higher cellular uptake and the particular entry pathways used, where macropinocytosis pathway and lysosomal release played an important role. Therefore, these results suggest that helper lipid composition is a crucial step to be considered in the design of niosome formulation for retinal gene delivery applications since clearly modulates the cellular uptake, internalization mechanism and consequently, the final transfection efficiency.This project was partially supported by the University of the Basque Country UPV/EHU (UFI 11/32), the National Council of Science and Technology (CONACYT), Mexico, Reg. # 217101, the Spanish Ministry of Education (Grants CTQ2010-20541, CTQ2010- 14897), the Basque Government (Department of Education, University and Research, predoctoral BFI- 2011-2226 grant) and by Spanish grants MAT2012-39290-C02-01 and IPT-2012-0574- 300000. Technical and human support provided by SGIker (UPV/ EHU) is gratefully acknowledged. Authors also wish to thank the intellectual and technical assistance from the ICTS “NANBIOSIS”, more specifically by the Drug Formulation Unit (U10) of the CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN) at the University of Basque Country (UPV/EHU). GC acknowledges support by the Italian Minister for University and Research (MIUR) (Futuro in Ricerca, Grant No. RBFR08TLPO).Peer reviewe

    Progress in Gelatin as Biomaterial for Tissue Engineering

    Get PDF
    Tissue engineering has become a medical alternative in this society with an ever-increasing lifespan. Advances in the areas of technology and biomaterials have facilitated the use of engineered constructs for medical issues. This review discusses on-going concerns and the latest developments in a widely employed biomaterial in the field of tissue engineering: gelatin. Emerging techniques including 3D bioprinting and gelatin functionalization have demonstrated better mimicking of native tissue by reinforcing gelatin-based systems, among others. This breakthrough facilitates, on the one hand, the manufacturing process when it comes to practicality and cost-effectiveness, which plays a key role in the transition towards clinical application. On the other hand, it can be concluded that gelatin could be considered as one of the promising biomaterials in future trends, in which the focus might be on the detection and diagnosis of diseases rather than treatment.This research was funded by the Spanish Ministry of Economy, Industry, and Competi- tiveness (PID2019-106094RB-I00/AEI/10.13039/501100011033) and the Basque Government who awarded Ph.D. grants (I.L. PRE_2021_2_0023; I.E. PRE_2021_2_0021)

    How Far Are Non-Viral Vectors to Come of Age and Reach Clinical Translation in Gene Therapy?

    Get PDF
    Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.This work was supported by the Basque Country Government (Department of Education, University and Research, Consolidated Groups IT907-16) and by the Spanish Ministry of Science and Innovation (Grant PID2019-106199RB-C21). I.V.B. and M.S.R. thank the University of the Basque Country (UPV/EHU) for the granted postdoctoral fellowship (ESPDOC19/47) and the granted pre-doctoral fellowship (PIF17/79), respectively. Additional funding was provided by the CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), an initiative of the Carlos III Health Institute (ISCIII)

    Protamine/DNA/Niosome Ternary Nonviral Vectors for Gene Delivery to the Retina: The Role of Protamine

    Get PDF
    The present study aimed to evaluate the incorporation of protamine into niosome/DNA vectors to analyze the potential application of this novel ternary formulation to deliver the pCMS-EGFP plasmid into the rat retina. Binary vectors based on niosome/DNA and ternary vectors based on protamine/DNA/niosomes were prepared and physicochemically characterized. In vitro experiments were performed in ARPE-19 cells. At 1:1:5 protamine/DNA/niosome mass ratio, the resulted ternary vectors had 150 nm size, positive charge, spherical morphology, and condensed, released, and protected the DNA against enzymatic digestion. The presence of protamine in the ternary vectors improved transfection efficiency, cell viability, and DNA condensation. After ocular administration, the EGFP expression was detected in different cell layers of the retina depending on the administration route without any sign of toxicity associated with the formulations. While subretinal administration transfected mainly photoreceptors and retinal pigment epithelial cells at the site of injection, intravitreal administration produced a more uniform distribution of the protein expression through the inner layers of the retina. The protein expression in the retina persisted for at least one month after both administrations. Our study highlights the flattering properties of protamine/DNA/niosome ternary vectors for efficient and safe gene delivery to the rat retina.This project was partially supported by the University of the Basque Country UPV/EHU (UFI 11/32), by the Research Chair in Retinosis Pigmentosas “Bidons Egara”, the National Council of Science and Technology (CONACYT), Mexico, Reg. No. 217101, the Spanish Ministry of Education (Grant Nos. CTQ2010-20541, CTQ2010-14897), the Basque Government (Department of Education, University and Research, predoctoral BFI-2011-2226 grant), and by Spanish Grant Nos. MAT2012-39290-C02-01 and IPT-2012-0574-300000. Technical and human support provided by SGIker (UPV/EHU) is gratefully acknowledged. The authors also wish to thank the intellectual and technical assistance from the ICTS “NANBIOSIS”, more specifically by the Drug Formulation Unit (U10) of the CIBER in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN) at the University of Basque Country (UPV/EHU).Peer reviewe

    The influence of the polar head-group of synthetic cationic lipids on the transfection efficiency mediated by niosomes in rat retina and brain

    Get PDF
    The development of novel non-viral delivery vehicles is essential in the search of more efficient strategies for retina and brain diseases. Herein, optimized niosome formulations prepared by oil-in water (o/w) and film-hydration techniques were characterized in terms of size, PDI, zeta potential, morphology and stability. Three ionizable glycerol-based cationic lipids containing a primary amine group (lipid 1), a triglycine group (lipid 2) and a dimethylamino ethyl pendent group (lipid 3) as polar head-groups were part of such niosomes. Upon the addition of pCMS-EGFP plasmid, nioplexes were obtained at different cationic lipid/DNA ratios (w/w). The resultant nioplexes were further physicochemically characterized and evaluated to condense, release and protect the DNA against enzymatic digestion. In vitro experiments were performed to evaluate transfection efficiency and cell viability in HEK-293, ARPE-19 and PECC cells. Interestingly, niosome formulations based on lipid 3 showed better transfection efficiencies in ARPE-19 and PECC cells than the rest of cationic lipids showed in this study. In vivo experiments in rat retina after intravitreal and subretinal injections together with in rat brain after cerebral cortex administration showed promising transfection efficiencies when niosome formulations based on lipid 3 were used. These results provide new insights for the development of non-viral vectors based on cationic lipids and their applications for efficient delivery of genetic material to the retina and brain. © 2015 Elsevier Ltd.This project was partially supported by the University of the Basque Country UPV/EHU (UFI 11/32), the National Council of Science and Technology (CONACYT), Mexico, Reg. # 217101, the Spanish Ministry of Education (Grant CTQ2010-20541, CTQ2010- 14897), the Basque Government (Department of Education, University and Research, predoctoral BFI-2011-2226 grant) and by Spanish grants MAT2012-39290-C02-01 and IPT-2012-0574- 300000. Technical and human support provided by SGIker (UPV/ EHU) is gratefully acknowledged. Authors also wish to thank the intellectual and technical assistance from the ICTS “NANBIOSIS”, more specifically by the Drug Formulation Unit (U10) of the CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN) at the University of Basque Country (UPV/EHU).Peer reviewe
    corecore