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Abstract. In this work, we carried out a comparative study of four different niosome 

formulations based on the same cationic lipid and non-ionic tensoactive. The niosomes 

prepared by oil-in-water emulsion technique (o/w) only differed in the helper lipid 

composition: squalene, cholesterol, squalane or no helper lipid. Niosomes and nioplexes 

elaborated upon the addition of pCMS-EGFP reporter plasmid were characterized in terms of 

size, zeta potential and polydispersity index. The capacity of the niosomes to condense, release 

and protect the DNA against enzymatic degradation was evaluated by agarose gel 

electrophoresis. In vitro experiments were carried out to evaluate transfection efficiency and 

cell viability in retinal pigment epithelial cells. Moreover, uptake and intracellular trafficking 

studies were performed to further understand the role of the helper lipids in the transfection 

process. Interestingly, among all tested formulations, niosomes elaborated with squalene as 

helper lipid were the most efficient transfecting cells. Such transfection efficiency could be 

attributed to their higher cellular uptake and the particular entry pathways used, where 

macropinocytosis pathway and lysosomal release played an important role. Therefore, these 

results suggest that helper lipid composition is a crucial step to be considered in the design of 

niosome formulation for retinal gene delivery applications since clearly modulates the cellular 

uptake, internalization mechanism and consequently, the final transfection efficiency. 

Keywords: Niosomes; Non-viral vector; Cationic lipid; Transfection; Helper lipid; Intracellular 

trafficking. 
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Abbreviations: CME, clathrin-mediated endocytosis; CvME, caveolae-mediated endocytosis; 

Sque, Squalene; Cho, cholesterol; Squa, squalane; None, none helper lipid; ARPE-19, retinal 

pigment epithelial cells; PDI, polydispersity index; SDS, sodium dodecyl sulfate; SC, 

supercoiled; OC, open circular; MFI, mean fluorescence intensity; CLSM, Confocal laser 

scanning microscopy experiments; M1, Mander’s overlap coefficient.  

 

 

INTRODUCTION 

Gene therapy represents a promising approach that aims to address the disease from 

the molecular point of view. This type of therapy is based on modified or normal functioning 

gene copies that are delivered into the cell nucleus to produce bioactive agents (Anderson, 

1998). The delivery of naked DNA is an inefficient process due to the negatively charged nature 

of nucleic acids that difficult the passage through cell membrane and the presence of enzymes 

that can digest the naked DNA. Therefore, it is necessary the use of capable vectors to deliver 

efficiently the DNA inside the cells, such as non-viral vectors that are mainly based on cationic 

polymers and lipids. Compared to viral vectors, non-viral vectors show a reduced persistence 

of transfection and low transfection efficiencies in cells. On the other hand, non-viral vectors 

are cheaper, easy to elaborate, and the size of DNA inserted is hypothetically limitless. 

Moreover, they do not exhibit antigen-specific immune and inflammatory response (Charbel 

Issa and MacLaren, 2012). Consequently, non-viral vectors have captured the attention of the 

research community in the last 20 years. 

  Niosomes are drug carrier systems similar to liposomes with a bilayer structure, where 

the phospholipids of the liposomes have been substituted by non-ionic surfactants. Compared 

to liposomes, niosomes show some significant advantages, such as low cost and high chemical 

and storage stabilities. Even though the application of niosomes in gene therapy has been 

poorly studied, some optimistic results have been recently reported in the literature that 



highlights the satisfactory properties of niosomes for gene delivery purposes (Ojeda et al., 

2015b; Puras et al., 2014).  

Niosomes as gene delivery vectors are commonly based on non-ionic surfactants, 

cationic lipids and helper lipids. Over the years, several researchers have studied these 

components and their effect on the niosome formulations. Such studies have shown that non-

ionic surfactants make niosome formulations stable, and prevent the formation of aggregates 

of the particles (Choi et al., 2004; Huang et al., 2011; Moghassemi and Hadjizadeh, 2014). 

Cationic lipids handle the interaction with the negatively charged DNA and its condensation to 

form nioplexes by electrostatic interactions (Karmali and Chaudhuri 2007). Additionally, it has 

been observed that cationic lipid chemical structures influence on the niosomes charge, 

toxicity, biodegradability, and transfection efficiencies (Byk et al., 1998; Ojeda et al., 2015b; Zhi 

et al., 2010). Regarding helper lipids, it has been described that they are responsible for 

enhancing the physicochemical properties of the emulsion and the improve-ment of gene 

delivery (Dabkowska et al., 2012; Mochizuki et al., 2013). However, the mechanisms that 

involve these improvements in cationic niosome formulations for gene delivery applications 

have not been completely understood, and more detailed studies are required.  

The final impact on gene expression, among many other factors, clearly depends on 

the cell to be transfected and on the capacity of the vector to enter the cell and the posterior 

pathway employed to deliver its cargo into the nucleus (Agirre et al., 2015). Different 

endocytic routes can mediate the cellular uptake and the final cargo delivery. Among these 

endocytic routes clathrin-mediated endocytosis (CME), caveolae-mediated endocytosis (CvME) 

and macropinocytosis are among the most studied (Cardarelli et al., 2012; Marchini et al., 

2010; Zhao et al., 2011). Additionally to the uptake pathways, the particle transport 

mechanisms can deter-mine the final intracellular fate of the vector, e.g., lysosomal 

degradation (Pozzi et al., 2014). Such pathways have their particular characteristics and their 

intervention in the cellular uptake and further internal processing will depend on many factors 

related with the gene delivery vector such as the size, surface charge, morphology and 

composition (Luzio et al., 2009; Xiang et al., 2012; Zhao et al., 2011). Therefore, it is necessary 

to analyze and understand all these factors to develop more efficient non-viral vectors for 

gene delivery applications.  

Thus, we carried out a comparative study of four different niosome formulations based 

on the same cationic lipid and non-ionic surfactant, but different helper lipid, to determine its 

role in the niosome formulations and the transfection process mediated by nioplexes upon the 

addition of pCMS-EGFP reporter plasmid. The niosome formulations only differed in the helper 

lipid: Squalene (Sque), cholesterol (Cho), squalane (Squa) or none helper lipid (None). 

Niosomes prepared by oil-in-water emulsion technique (o/w), and nioplexes were 

characterized in terms of size, zeta potential and polydispersity index. The capacity of the 

niosomes to condense, release and protect the DNA against enzymatic degradation was 

evaluated by agarose gel electrophoresis. In vitro experiments were performed in retinal 

pigment epithelial cells (ARPE-19) cells by flow cytometry to assess the transfection efficiency 

of nioplexes and cell viability. Additionally, we carried out cell uptake studies at 1 h after the 

addition of the nioplexes. To comprehend the internalization process, we analyzed cell 

trafficking of our formulations in different entry pathways (CME, CvME, macropinocytosis) and 



lysosomal compartment. Colocalization was analyzed through Mander’s overlap coefficient 

between the nioplexes (niosomes/Cy3 stained DNA) and the above stained endocytic 

pathways. 

 

Fig. 1. Chemical structures of niosome components. A) Cationic lipid: 1-(2-

dimethylaminoethyl)-3-[2,3-di(tetradecyloxy) propyl]urea. B) Polysorbate 80. C) Squalene: 

(6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene D) 

Cholesterol: 2,15-dimethyl-14-(6-methylheptan-2-yl)tetracyclo[8.7.0.02,7.011,15]heptadec-7-

en-5-ol. E) Squalane: 2,6,10,15,19,23- hexamethyltetracosane. 

 

2. Material and methods  

2.1. Preparation of niosomes. 

Cationic lipid 1-(2-dimethylaminoethyl)-3-[2,3-di(tetradecy- loxy) propyl]urea was 

synthetized in the laboratory, see supporting information (Fig. SI 1), to elaborate all cationic 

niosome formulations. Niosomes based on the aforementioned cationic lipid (Fig. 1A), 

polysorbate 80 (Fig. 1B) (Tween 80, Sigma-Aldrich, Madrid, Spain) and different helper lipids 

were prepared using the o/w emulsification technique, as previously reported (Ojeda et al., 

2015b). We prepared four niosome formulations, where three formulations were prepared 

with different helper lipids and one formulation without helper lipid (None). Briefly, 5 mg of 

the cationic lipid were gently grounded with either 23 µl of squalene (Sque) (Fig. 1C), 100 µl of 

cholesterol (Cho) (Fig. 1D) or 24.69 ml of squalane (Squa) (Fig. 1E) (Sigma-Aldrich, Madrid, 

Spain). The concentration of all helper lipids in each formulation was 10 mM. Then, 1 ml of 

dichloromethane (DCM) (Panreac, Barcelona, Spain) was added to all four formulations and 

emulsified with 5 ml (0.5%, w/w) of the non-ionic surfactant aqueous solution of polysorbate 

80. Sonication was used to obtain the emulsion (Branson Sonifier 250, Danbury) for 30 s at 50 

W. The organic solvent was removed from the emulsion by evaporation under magnetic 

agitation for 3 h at room temperature inside the extraction hood. Upon DCM evaporation, a 



dispersion containing the nanoparticles was formed by precipitation of the nanoparticles in the 

aqueous medium. The final cationic lipid concentration obtained was 1 mg/ml.  

 

2.2. Plasmid propagation and preparation of nioplexes  

Escherichia coli DH5-α was used to propagate the pCMS-EGFP plasmid 

(PlasmidFactory, Bielefeld, Germany). According to the manufacturer’s purification 

instructions, the plasmid was treated using the Qiagen endotoxin-free plasmid purification 

Maxi-prep kit (Qiagen, Santa Clarita, CA, USA). The concentration of pDNA was quantified 

using a NanoDrop1 (ND-1000 spectrophotometer, Thermo Fisher Scientific Inc., Denver, USA) 

measuring the absorbance at 260 nm. Agarose gel electrophoresis in Tris borate-EDTA buffer, 

pH 8.0 (TBE buffer) was used to verify the purity of the plasmid. DNA bands were detected 

using GelRedTM (Biotium, Hayward, California, USA) and images were observed with a 

ChemiDocTM MP imaging system (Bio-Rad, USA). The nioplexes formed by the addition of DNA 

to the niosomes and expressed as the ratio of cationic lipid/DNA (w/w) were elaborated by 

mixing cationic lipid/DNA at 30/1 (w/w) mass ratio. The mixture was left for 30 min at room 

temperature to enhance electrostatic interactions between the cationic lipid of the niosomes 

and the plasmid. The stock solution of plasmid pCMS-EGFP (0.5 mg/ml) was estimated to be 

around 0.137 micromolar (pCMS-EGFP, 5541 bp, average MW 3657060). For confocal 

fluorescence microscopy and uptake cytometry experiments, we used Cy3- labeled 2.7 kbp 

plasmid DNA (0.5 mg/ml) (Mirus Bio Corporation, Madison, WI, USA).  

 

2.3. Size, polydispersity index and zeta potential measurements.  

The hydrodynamic diameter and the zeta potential of the niosomes and nioplexes 

were determined by Dynamic Light Scattering (DLS) and by Lasser Doppler Velocimetry (LDV), 

respectively. The data were obtained using a Zetasizer Nano ZS (Malvern Instrument, UK) as 

previously described (Ojeda et al., 2015b). Briefly, 50 µl of the niosomes and nioplexes were 

resuspended into 950 µl of 0.1 mM NaCl solution to determined size and polydispersity index 

(PDI). All measurements were carried out in triplicate. The particle size reported as 

hydrodynamic diameter was obtained by cumulative analysis. To determine the zeta potential, 

samples were resuspended (50 µl) into 0.1 mM NaCl (950 µl) using folded capillary cells for 

zeta analysis. The Smoluchowski approximation was used to support the calculation of the zeta 

potential from the electrophoretic mobility. Zeta potential measurements were run in 

triplicate. Only data that met the quality criteria according with the software program (DTS 

5.0) were included in the study.  

 

2.4. Agarose gel electrophoresis studies. 

Naked DNA and nioplexes based on different helper lipids and without helper lipid at 

30/1 cationic lipid/DNA (w/w) mass ratio (containing 200 ng of the plasmid) were subjected to 

agarose gel electrophoresis. The agarose gel (0.8%) (Sigma-Aldrich, Madrid, Spain) was 



immersed in a Tris-acetate-EDTA buffer and exposed for 30 min to 120 V. GelRed
TM

 (Biotium, 

Hayward, California, USA) was used to stain the DNA bands and images were observed with a 

ChemiDoc
TM

 MP Imaging System and analyzed by Image Lab
TM

 Software (BioRad, USA). To 

evaluate the release of DNA from the formulation, 12 µl of a 7% sodium dodecyl sulfate (SDS) 

(Sigma- Aldrich, Madrid, Spain) solution was added to the samples. The DNA protection 

capacity of the vectors against enzymatic digestion was analyzed by adding the DNase I 

enzyme (Sigma-Aldrich, Madrid, Spain) to the formulations (final concentration of 1 U DNase I 

per 2.5 µg DNA). Afterward, the mixtures were incubated at 37 ºC for 30 min. Finally, 12 µl of a 

7% SDS solution was added to analyze the released DNA. Each sample contained 4 µl of 

loading buffer (BioRad, USA). Untreated DNA was used as a control to compare the integrity of 

the DNA in each sample.  

 

2.5. Cell culture for transfection and cell uptake studies. 

ARPE-19 cells (ATCC) were grown in D-MEM/F-12 containing 10% bovine serum and 

supplemented with 5% penicillin-streptomycin (Gibco1 San Diego, California, USA) and 

incubated at 37 ºC and 5% CO2 atmosphere. Cells were split every 3–4 days to maintain 

monolayer coverage. For transfection and cell uptake assays, the cells were seeded in 24 well 

plates at initial density of 10 x 10
4
 cells per well, with 300 µl of D-MEM/F-12 containing 10% 

bovine serum and incubated at 37 ºC and 5% CO2 atmosphere. Cells were adhered overnight to 

achieve 70–90% of confluence at the time of transfection and cell uptake assays. For 

transfection assay, the regular growth medium was removed from ARPE-19 cells, and the cells 

were exposed to nioplexes based on the different helper lipids and without helper lipid 

(containing 1.25 µg of the plasmid for each well) resuspended in Opti-MEM
TM

 transfection 

medium (Gibco
TM

, San Diego, California, USA). Each formulation was used in triplicate. After 4 

h of incubation, the nioplexes were removed. Then, cells were washed twice with PBS (Sigma-

Aldrich, Madrid, Spain) and 300 µl of regular growth medium was added to the cells (Ojeda et 

al., 2015a). Cells were allowed to grow for 72 h until flow cytometry analysis. For cell uptake 

assay, the regular growth medium was removed from ARPE-19 cells, and the cells were 

exposed to nioplexes prepared with different helper lipids and without helper lipid (containing 

1.25 µg of Cy3-labeled plasmid for each well) resuspended in Opti-MEM
TM

 transfection 

medium. After 1 h of incubation, the nioplexes were removed. Then, cells were washed twice 

with PBS and detached for flow cytometry analysis. Each formulation was used in triplicate.  

 

2.6. Transfection efficiency and cell viability assays. 

FACSCalibur system flow cytometer (Becton Dickinson Bioscience, San Jose, USA) was 

used to conduct flow cytometry analysis to quantify the % of EGFP and the mean fluorescence 

intensity (MFI) of positive cells. Cells were washed twice with PBS (Sigma-Aldrich, Madrid, 

Spain) and detached from the microplate with 200 µl of trypsin/EDTA (Gibco
TM

 San Diego, 

California, US). Once the cells were detached, 400 µl of normal growth medium was added and 

directly introduced into the flow cytometer tubes. Transfection efficiency was expressed as the 

percentage of EGFP positive cells at 525 nm (FL1) after excluding dead cells stained with 5 ml 



of diluted (1/20) Sytox
TM

 Blue reagent (Invitrogen, Carlsbad, CA, USA). Control samples (non-

transfected cells) were displayed on a forward scatter (FCS) versus side scatter (SSC) dot plot 

to establish a collection gate and exclude cell debris. The fluorescence corresponding to dead 

cells was measured at 444 nm (FL6). Mean fluorescence intensity (MFI) data were obtained 

from live positive cells (FL1). Control samples containing Lipofectamine
TM

 2000 (Invitrogen, 

Carlsbad, CA, USA), transfected cells without Sytox
TM

 blue, and non-transfected cells with 

Sytox
TM

 blue were used to established the cytometer settings and channel compensations. For 

each sample, 10000 events were collected. Each formulation was used in triplicate. FlowJo 

software (Becton Dickinson, Mountain View, CA, USA) was used to analyze the data.  

 

2.7. Cell uptake analysis.  

FACSCalibur system flow cytometer was used to conduct flow cytometry analysis to 

quantify the percentage of cells that contained Cy3-labeled plasmid DNA. Cells were washed 

twice with PBS and detached from the microplate with 200 ml of trypsin/ EDTA. Once the cells 

were detached, 400 ml of normal growth medium were added and directly introduced into the 

flow cytometer. Cell uptake was expressed as the percentage of Cy3- labeled plasmid positive 

cells at 585 nm (FL2) after excluding dead cells as previously described. Mean fluorescence 

intensity (MFI) data were obtained from live positive cells (FL2). Control samples (non-

transfected cells) were displayed on a forward scatter (FSC) versus side scatter (SSC) dot plot 

to establish a collection gate and exclude cells debris. For each sample, 10000 events were 

collected. Each formulation was used in triplicate. Data was analyzed by FlowJo software 

(Becton Dickinson, Mountain View, CA, USA).  

 

2.8. Internalization mechanism assays. 

To identify the endocytic vesicles involved in nioplexes internalization, we performed 

colocalization assays in ARPE- 19 cells. The cells were seeded in 12 well plates containing 

coverslips at an initial density of 20 x 10
4
 cells per well. A volume of 600 µl of D-MEM/F-12 

containing 10% bovine serum was added to each well and incubated at 37 ºC and 5% CO2 

atmosphere. Cells were adhered overnight to achieve 70–90% of confluence at the time of 

internalization assay. Then, the regular growth medium was removed to expose the cells to 

nioplexes based on the different helper lipids and without helper lipid (containing 0.625 µg of 

the Cy3 plasmid for each well) and fluorescent endocytic markers. Briefly, the markers were 

used as follows (Cardarelli et al., 2012): 60 µl (10 mg/ml) of Dextran Alexa Fluor 488, a fluid-

phase uptake marker, incubated for 60 min to label macropinosomes; 96 µl (0.5 mM) of 

Lysotracker
TM

 Green incubated for 60 min to label lysosomes; 5 µl (1 mg/ml) of Cholera toxin B 

Alexa Fluor 488 incubated for 60 min to label CvME; and 5 µl (5 mg/ml) of Transferrin Alexa 

Fluor 488 incubated for 60 min to label CME. All markers were purchased from Life 

Technologies, Eugene, OR, USA. Once the markers and the nioplexes were added, Opti-MEM
TM

 

transfection medium was incorporated to obtain 600 ml final volume in each well. Cells were 

incubated for 1 h at 37 ºC and 5% CO2 atmosphere. Next, the medium containing nioplexes 

was removed, and cells were washed twice with PBS. Then, the cells were fixed with 4% 



formaldehyde and mounted for their posterior examination by confocal microscopy. ImageJ 

software (NIH Image; http://rsbweb.nih.gov/ij/) was used to measure colocalization through 

Mander’s overlap coefficient between red-labeled nio-plexes and green stained endocytic 

pathways. (M = colocalized red/ total red). Colocalization measurements were evaluated in 30 

cells for each entry pathway.  

 

2.9. Confocal laser scanning microscopy experiments (CLSM). 

CLSM experiments were performed to evaluate qualitatively and quantitatively the 

colocalization between the different nioplexes formulations and the Cy3 stained DNA. Such 

assays were carried out with the Olympus Fluoview 1000 confocal microscope (Olympus, 

Tokyo, Japan) interfaced with a 405 nm diode laser, a 488 nm Argon laser, and 543 nm HeNe 

laser to excite the fluorescently labeled pDNA. Mounted slides were viewed with a 60 x 1.25 

numerical aperture (NA) water immersion objective. The following collection ranges were 

adopted: 500–540 nm (EGFP, Transferrin Alexa Fluor 488, Cholera toxin B Alexa Fluor 488 and 

Dextran Alexa Fluor 488), 555–655 nm (Cy3), and 460–530 (Lysotracker
TM

 Green). Images were 

collected in a sequential mode to eliminate emission crosstalk between the dyes.  

 

3. Results and discussion  

3.1. Synthesis of the ionizable cationic amino lipid. 

The evaluation of acid dissociation constants (pKa) in cationic lipids has become a 

useful parameter to design more efficient pH-responsive lipid-based drug delivery systems 

(Jayaraman et al., 2012). This mechanism normally benefits the release of the delivery system 

cargo in the presence of acid pH caused by late endosomes (pH 6.5) or lysosomes (pH 4.5). This 

property has allowed the design and synthesis of ionizable cationic lipid combinatorial libraries 

and formulations, which have shown a significant role on mediating cellular internalization and 

thereby causing the expected gene silencing in vitro and in vivo (Jayaraman et al., 2012). In our 

previous work (Ojeda et al., 2015b), we found a tight correlation between acid dissociation 

constant (pKa) value and activity of cationic lipid-based combinatorial libraries, where an 

optimization was determined by several variables like lipid-chain unsaturation, linker 

chemistry and polar head nature. Interestingly, an optimum pKa (<7.0) for transfection was 

established as an ideal value to design new liposomal drug delivery systems (Semple et al., 

2010). Specifically, this optimal relationship between pKa (6.72) and silencing activity was 

successfully found in the serinol isomer of the presented compound with the 

dimethylaminoethyl pendant group (Ojeda et al., 2015b). These findings made us to consider 

the possibility of introducing this potential modification to the presented cationic lipid: 1-(2-

dimethylaminoethyl)-3-[2,3-di(tetradecyloxy)propyl] urea and continue with a deeper 

characterization. Moreover, this cationic lipid has already shown interesting transfection 

efficiencies in vivo in rats (Ojeda et al., 2015a).  

In light of the promising transfection results in vitro and in vivo recently obtained by 

our research group with optimized formulations based on the amino lipid 2,3-



di(tetradecyloxy)propan- 1-amine (Puras et al., 2014) (1, Fig. SI 1), we decided to chemically 

modify our glycerol-based cationic lipid lead compound with other potential polar head groups 

like this dimethylaminoethyl moiety used for gene delivery purposes.  

The introduction of the dimethylamino derivative was accomplished by activating the 

amino lipid 1 with p-nitrophenyl- chloroformate according to well-stablished protocols (Ojeda 

et al., 2015b). Final nucleophilic reaction introduced the anticipated cationic head group and 

generated the expected urea derivative in moderate yields (65%) (Fig. SI 1). Having in hand the 

expected cationic lipid compound, we focused on evaluating the most appropriate niosomal 

formulation by adding squalene, cholesterol and squalane as helper lipids and its efficiency in 

gene transfection experiments.  

 

3.2. Size polydispersity index and zeta potential measurements of niosomes and nioplexes. 

Combining size and zeta potential measurements is one of the most experimental 

strategies used to characterize the formation of vector/DNA complexes. Therefore, we 

investigated such param-eters along with the polydispersity index (Fig. 2). Size characteri- 

zation (Fig. 2A, white bars) indicated that niosomes based on squalene and cholesterol showed 

similar size (147 and 176 nm, respectively). Niosomes based on squalane showed the biggest 

size (259 nm) and niosomes prepared without helper lipid the smallest size (61 nm). As a 

homogeneity parameter for the niosome formulations, we determined the polydispersity 

index (PDI) (Fig. 2B). All niosome formulations showed appropriate size homogeneity with PDI 

values lower than 0.372. Zeta potential values of niosomes prepared with different helper 

lipids are shown in Fig. 2A (dot lines). The results showed that the zeta potential value 

obtained for niosomes prepared with squalene and squalane were similar (around +50 mV). 

For niosomes prepared with cholesterol, the zeta potential value was around +40 mV. Finally, 

the lowest values were observed with niosomes prepared without helper lipid (+32 mV). The 

cationic lipid/DNA ratio w/w employed to form the nioplexes was the result from a previous 

characterization study (data not shown), where the ratio 30/1 was found the most 

appropriated. The size of the nioplexes (Fig. 2A gray bars) showed the following results: 

Nioplexes based on squalene (150 nm), cholesterol (180 nm), squalane (254 nm), and without 

helper lipid (79 nm). These data indicate that the addition of DNA to niosomes to form 

nioplexes does not modify remarkably the original size of the niosomes, probably due to the 

high DNA condensation capacity of all formulations, with the exception of the niosome 

formulation prepared without helper lipid. All the formulations showed acceptable PDI values 

lower than 0.369 (Fig. 2B). The addition of the negatively charged DNA to niosomes decreased 

the zeta potential of all nioplexes formulations (Fig. 2A dash lines): Nioplexes based on 

squalene (from +50 to +40 mV), nioplexes based on cholesterol (from +38 to +35 mV), 

nioplexes based on squalane (from +51 to +46 mV) and, especially in nioplexes prepared 

without helper lipid (from +32 to +14 mV). This reduction on the superficial charge could be 

explained in part by the partial neutralization of the cationic charge carried by niosomes by the 

negatively charged DNA molecules. In any case, all nioplexes molecules were found to be 

positively charged (Fig. 2A dash lines), which suggest that at this cationic lipid/DNA mass ratio 

(30/1, w/ w) free DNA is not present on the formulation and all the DNA is bound to the 



niosome. Collectively, our data shows that size and zeta-potential results are compatible with 

DNA binding to niosome surfaces (Caracciolo and Caminiti, 2004). The addition of DNA to the 

niosomes did not remarkably modify the particle sizes, which are adequate for cellular uptake 

and internalization purposes (Caracciolo et al., 2009; Gillard et al., 2014; Gratton et al., 2008; 

Lim and Gleeson, 2011; Rejman et al., 2004; Xiang et al., 2012). Regarding zeta potential, it 

must be highlighted that all formulations showed positive zeta-potential values, which 

enhances not only the formation of stable suspensions due to the electrostatic repulsion 

between the positively charged particles (Caracciolo and Amenitsch, 2012) but also the 

interaction with negatively charged cell surfaces and the subsequences cell uptake processes 

(Rezvani Amin et al., 2013). In any case, we have to consider as well that both particle size and 

zeta potential values were measured as previously reported (Ojeda et al., 2015a; Puras et al., 

2014) in 0.1 mM NaCl medium to avoid saturation of the electrodes in the cuvettes. Therefore, 

although obtained values have significant importance for comparative purposes among the 

different formulations, absolute values could differ from those obtained in other fluids, such as 

transfection medium or other biological fluids, due to differences in the osmolarity or pH 

values to name a few.  

 

Fig. 2. Physico-chemical characterization of niosomes and nioplexes (niosome/DNA w/w ratio 

30/1) prepared with different helper lipids: squelene (Sque), cholesterol (Cho), squalane (Squa) 

and without helper lipid (None). A) Size (white bars) and zeta potential (dot line) of niosomes. 

Size (gray bars) and zeta potential (dash lines) of nioplexes. B) PDI values of niosomes and 

nioplexes. Each value represents the mean ± standard deviation of three measurements. 

 

3.3. Agarose gel electrophoresis studies.  



We investigated the electrostatic interactions of niosomes and DNA, the release of the 

DNA by SDS addition to the formulations and the capacity of niosomes to protect DNA against 

enzymatic digestion (Fig. 3) (Ochoa et al., 2014; Ojeda et al., 2015b). The supercoiled (SC) 

bands in the gel show the most bioactive DNA form, and open circular (OC) bands represent 

the structural change of DNA of a less active form (Stellwagen and Stellwagen, 2009).  

Nioplexes based on squalene showed deficient DNA condensation (lane 4), as a faint 

SC band was shown in the agarose gel. An easy release of DNA from the niosomes was 

detected (lane 5) upon the addition of the SDS surfactant agent, which could be the 

consequence of poor condensation. Due to the SC band observed in lane 6 (treatment with 

SDS plus DNase I), we can conclude that nioplexes based on squalene were able to protect the 

DNA from enzymatic digestion.  

In the case of nioplexes based on cholesterol, we observed that they were able to 

condensate the DNA (lane 7). Moreover, we observed partial release of DNA upon the addition 

of SDS (lane 8) as all DNA content was not observed at the bottom of the well. Reasonable 

DNA protection was also observed as indicated by the detected SC band (lane 9).  

The analysis of nioplexes based on squalane, indicated high DNA condensation (lane 

10), probably, due to their observed high zeta potential values (+46 mV, Fig. 2A dash lines). 

Moreover, these nioplexes were able to release the DNA efficiently upon the addition of SDS 

(lane 11). Concerning about DNA protection against enzymatic digestion, these nioplexes 

showed that DNA was properly protected (lanes 12).  

Finally, nioplexes prepared without helper lipid, despite their low zeta potential values 

(+14 mV, Fig. 2A dash lines), showed high DNA condensation capacity (lane 13). Thus, it 

seemed that the absence of helper lipids in the formulations could increase the condensation 

of DNA at low zeta potential values. Additionally, there was a satisfactory release and 

protection of DNA from enzymatic digestion, as SC bands were observed in lanes 14 and 15, 

respectively.  

In brief, these studies showed that nioplexes prepared without helper lipid showed the 

highest level of DNA condensation whereas nioplexes based on squalene showed the lowest 

one. About DNA release, nioplexes based on squalene, squalane and without containing helper 

lipid showed an excellent capability to release the DNA. It is worth mentioning that both 

condensation and release of DNA are important parameters that need to be evaluated for the 

success of nioplexes as gene delivery vectors, where a delicate balance between these two 

factors for proper DNA delivery is required (Puras et al., 2014).  

DNA protection is another factor to take into account due to the presence of enzymes 

in the cytosol since they can easily degrade the DNA and thus hamper the desired DNA 

delivery process (Midoux and Monsigny, 1999). This DNA protection was observed for all 

niosome formulations, which were able to protect the DNA against enzymatic digestion  

 

 



 

Fig. 3. Binding, SDS-induced release and protection of DNA prepared with different helper 

lipids: squelene (Sque), cholesterol (Cho), squalane (Squa), without helper lipid (None). OC: 

open circular form, SC: supercoiled form. Lanes 1–3 correspond to free DNA; lanes 4–6, 

nioplexes based on squalene; lanes 7–9, nioplexes prepared with cholesterol; lanes 10–12, 

nioplexes based on squalane; lanes 13–15, nioplexes prepared without helper lipid. Naked 

DNA and nioplexes were treated with SDS (lanes 2,5,8,11 and 14) and DNase I + SDS (lanes 

3,6,9,12 and 15). 

 

Fig. 4. Transfection efficiencies at 72 h post-addition of nioplexes prepared with different 

helper lipids: squalene (Sque), cholesterol (Cho), squalane (Squa) and without helper lipid 

(None) in ARPE-19 cells. A) Percentage of transfection (bars) and viability (dots) of nioplexes. B) 

Mean fluorescence intensity (MFI) of cells with nioplexes prepared with different helpers. Each 

value represents the mean ± standard deviation of three measurements. 

 



3.4. In vitro transfection and cell uptake experiments.  

Percentages of transfected cells, cell viability, and cellular uptake studies were carried 

out in ARPE-19 cells as a retinal cell model for in vivo applications (Ochoa et al., 2014; Puras et 

al., 2013). These pigmented epithelial cells of the retina play a major role in retinal diseases 

associated with senescence and dystrophies of the photoreceptors. Mutations in genes of 

these cells can lead to photoreceptors death with dramatic consequences (Bejjani et al., 2005). 

Therefore, the knowledge of the physicochemical and biological parameters that affect to the 

transfection efficiency on these particular cells merits special attention in order to design more 

efficient non-viral vectors for retinal gene delivery applications (Ojeda et al., 2015a).  

Gene expression in the cell nucleus is an indication that the DNA has been properly 

delivered by the vector. However, this process can involve, sometimes, few numbers of cells, 

which can be inadequate for gene therapy purposes. Therefore, our aim is to transfect as many 

cells as possible without compromising the cellular viability. The highest percentages values of 

transfected cells were observed for nioplexes prepared with squalene (31%), followed by 

nioplexes prepared with squalane (14%) (Fig. 4A bars). The lowest transfection values were 

obtained when nioplexes were prepared with cholesterol (2%) and without helper lipid (2%). 

For additional transfection data see histograms in supporting infor- mation (Fig. SI 2). 

Therefore, and as reported in the literature, transfection efficiency strongly depends on the 

chemical compo-sition of the helper lipids (Chung et al., 2001; Kim et al., 2003). The above 

results could be explained, in part, by the different endosomal scape ability of the helper lipids 

(Pozzi et al., 2012). This capability has been attributed to the structural transition that helper 

lipids offer to the delivery system. Such structural transition usually goes from lamellar to 

inverse hexagonal due to the acid environment of the endosomes, where the transition 

induces the release of the DNA and its subsequent delivery into the cytoplasm (Allain et al., 

2012; Zuhorn et al., 2005). Additionally, analyzed MFI data (Fig. 4B) showed that nioplexes 

prepared with squalene showed the higher MFI, around 70. On the other hand, despite of the 

low percentage of transfected cells observed with nioplexes prepared with the other three 

formulations (Fig. 4A bars), we found interesting MFI data that suggest that the few number of 

transfected cells were able to produce significant amounts of EGFP (Fig. 4B, Cho, Squa and 

None). The capacity of nioplexes based on squalene to transfect more efficiently ARPE-19 cells 

might also rely on the fact that squalene is usually synthesized in the cells, which may indicate 

that cells could easily recognize it and subsequently increase its cell permeability (Koivisto and 

Miettinen 1988; Liu et al., 1976; Stewart, 1992). Therefore, we hypothesize that nioplexes 

prepared with squalene could take advantages of the properties of this helper lipid to obtained 

high transfection efficiencies. In any case, it could be interesting to perform further in vivo 

experiments since transfection efficiency in vitro conditions may be strongly different than the 

efficiency observed in real biological fluids, mainly due to unspecific interactions between gene 

delivery vectors and biomolecules, such as serum proteins, that clearly affect to the stability 

and uptake of the formulations (Puras et al., 2013). In any case, we have recently reported that 

niosomes based on squalene helper lipid transfected efficiently both the rat retina after 

intravitreal and subretinal administrations and the rat brain (Ojeda et al., 2015a; Puras et al., 

2014).  



Additionally, to develop efficient drug delivery systems, it is important to consider the 

possible toxic effect of these vectors upon the targeted cells since cell viability generally 

depends on the vector composition (Martin et al., 2005; Ojeda et al., 2015b). Therefore, the 

effect of our niosome formulations on ARPE-19 cells was studied. Cell viability results (Fig. 4A 

dots) showed high viabilities with all the nioplexes formulations (around 90%), which indicated 

high cell tolerability with all the helper lipids used in each formulation. Cell uptake analysis is 

another primary assay that helps to understand part of the transfection process and shows the 

capacity of the nioplexes to be internalized when they are in contact with the cells.  

 

Fig. 5. Cellular uptake at 1 h after the addition of nioplexes prepared with different helper 

lipids: squalene (Sque), cholesterol (Cho), squalane (Squa) and without helper lipid (None) in 

ARPE-19 cells. Uptake percentage of cells upon the addition of nioplexes (Black bars). Mean 

fluorescence intensity (MFI) of cells with nioplexes prepared with different helpers (White 

bars). Each value represents the mean ± standard deviation of three measurements. 

Cell uptake percentages results (Fig. 5 black bars) showed that nioplexes based on 

squalene were practically internalized by all the cells (99%), and nioplexes based cholesterol, 

squalane and without helper also showed worthy cell uptake levels (75%, 85% and 72%, 

respectively). For additional uptake data see histograms in supporting information (Fig. SI 3). 

To show a better insight into the cell uptake process, we analyzed as well the mean MFI of the 

cells (Fig. 5 white bars). Our results showed that nioplexes based on squalene helper lipid 

showed higher MFI (around 200) compared to the rest of formulations (nioplexes based on 

cholesterol 32, squalane 69 and without helper lipid 58). Thus, our cellular uptake studies 

indicated that nioplexes based on squalene were internalized in most of the analyzed cell 

population, and the amount of nioplexes internalized in each cell was superior compared to 

the rest of formulations. Regarding this point, we could assume that the higher MFI value of 

niosomes based on squalene observed in Fig. 5 (white bars) could be due to the higher particle 

size of this formulation rather than to the differences on number of particles internalized. 

However, data reported on Fig. 2A, clearly discard this assumption. Moreover, we could 

discard the hypothesis that only Cy3-labelled DNA without the niosomes could enter the cell 

since data reported on Fig. 2A shows that at 30/1 cationic lipid/DNA mass ratio all the DNA is 

bound to the niosome.  

 



 

Fig. 6. Cell trafficking results in ARPE-19 cells co-incubated with nioplexes prepared with 

squalene (Sque), cholesterol (Cho), squalane (Squa) and without helper lipid (None). A) 

Confocal microscopy merged images showing the cells co-incubated with nioplexes. Each 

image displayed in the optical section was representative of the cell population. Green coloring 

shows cells stained with Transferrin Alexa Fluor 488 for CME, Dextran Alexa Fluor 488 for 

macropinocytosis and Cholera toxin B Alexa Fluor 488 for CvME. Red coloring shows the DNA 

stained with Cy3. B) Colocalization values were given as the fraction of cell-associated 

nanoparticles colocalizing with fluorescently labeled endocytic structures. M1 is equal to 

Mander’s overlap coefficient between the red signal from the stained DNA and the green 

fluorescence of the stained entry pathways. Each value represents the mean ± standard 

deviation of three measurements. (For interpretation of the references to color in this figure 

legend and text, the reader is referred to the web version of this article.) 

 

Additionally, fluorescent confocal microscopy images showed that immediately after 

administration (t < 5 min), DNA appeared to be confined within punctate spot-like structure, 



while no evidence of diffuse fluorescence was found (see Supporting information Figure SI 4). 

This finding unambiguously suggested that, at the early stages of internalization, DNA was 

encapsulated within niosomes vesicles. Additionally, squalene has shown to increase the 

phagocytic activity of cells due to its capacity to potentiate the immune response in a non-

toxic manner (Allison and Byars, 1986; Seubert et al., 2008). Furthermore, some authors have 

reported that squalene increases oxygenation in the cells, which results in a more efficient 

metabolic process (Reddy and Couvreur, 2009). Therefore, a more efficient and easy uptake of 

DNA could be performed when squalene is used as helper lipid in our niosome formulations.  

Among many other parameters, cell uptake could also depends on physico-chemical 

parameters of the niosomes such as the particle size, where bigger size particles (>500 nm) are 

difficult and slowly taken, contrary to smaller particles (40 nm), which are easily and rapidly 

captured (dos Santos et al., 2011). However, our results indicated that the lowest cell uptake 

value was obtained from the smallest particles (79 nm, nioplexes prepared without helper 

lipid), and the most efficient cellular uptake was obtained with bigger nioplexes (around 150 

nm, nioplexes prepared with squalene and cholesterol). These data suggest that not only size 

is determinant in the cellular uptake but the helper lipid composition as well. 

 

Fig. 7. Lysosome colocalization results in ARPE-19 cells co-incubated with nioplexes prepared 

with squalene (Sque), cholesterol (Cho), squalane (Squa) and without helper lipid (None). 

Niosomes were complex with DNA stained with Cy3. A) Confocal microscopy merged images 

showing cells co-incubated with nioplexes prepared with different helper lipids. Each image 

displayed in the optical section was representative of the cell population. Green and red 

coloring show cells stained with Lysotracker1 Green and the DNA, respectively. B) The 

colocalization values were given as the fraction of cell-associated nanoparticles colocalizing 

with fluorescently labeled lysosomes, where M1 is equal to Mander’s overlap coefficient 

between the red signal from the stained DNA and the green fluorescence of the stained 

lysosomes. Each value represents the mean ± standard deviation of three measurements. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

 



3.5. Intracellular trafficking. 

To develop more efficient non-viral vectors it is necessary to understand their 

intracellular trafficking mechanism and how their physical-chemical properties might trigger 

different internalization pathways. Thus, in the following experiments, we have investigated 

the intracellular traffic of nioplexes formulations and how this process influences the 

transfection efficiency. Fluorescence confocal microscopy allowed visualizing the intra-cellular 

trafficking of fluorescently labeled nioplexes (red) in ARPE- 19 cells in the presence of various 

endocytic markers (green) (Fig. 6A). Since there was the possibility of finding dextran-positive 

endosomes internalized by clathrin-mediated pathway (roughly 100–200 nm in size), the 

incubation time applied (60 min) was chosen to minimize accumulation of dextran in 

endosomes internalized by mechanisms other than macropinocytosis. The degree of 

colocalization was calculated by Mander’s overlap coefficient (Fig. 6B) to perform a 

quantitative analysis of confocal images. Colocalization analysis (Fig. 6B) showed that 

squalene- containing nioplexes mostly used macropinocytosis (M = 0.480) followed by CvME 

(M = 0.266) and CME (M = 0.258). On the other side, cholesterol-containing nioplexes were 

mainly located in CME (M = 0.420) and CvME (M = 0.475), while they were poorly processed 

throughout macropinocytosis (M = 0.106). Nioplexes prepared with squalane, were 

internalized via macropinocytosis (M = 0.388) and CME (M = 0.376) and to a less extent via 

CvME (M = 0.237). Lastly, in the absence of helper lipid nioplexes were also equally 

internalized via CME (M = 0.227), macropinocytosis (M = 0.336) and CvME (M = 0.300). Our 

results indicated that each nioplexe formulation could use all the entry pathways simulta-

neously. Notably, transfection efficiencies did correlate to the internalization pathway: the 

larger the involvement of macro-pinocytosis, the higher the transfection efficiency. To account 

for differences in transfection efficiency the ultimate intracellular fate of nioplexes was 

investigated (Fig. 7A). To this end, we used Lysosensor, which accumulates in acidic cell 

organelles, and is primarily a lysosome marker. Colocalization of fluorescently tagged nioplexes 

and Lysosensor reveals that highly efficient squalene-containing systems could efficiently 

escape from endo-somal compartments (M = 0.180), while poorly efficient cholester- ol-

containing nioplexes were largely degraded in the lysosomes (M = 0.895). Nioplexes prepared 

either with squalane and with no helper lipid exhibited intermediate levels of lysosomal 

accumula-tion (M = 0.330 and 0.247, respectively).  

The precise correlation between the mechanism of cell uptake, final intracellular fate 

and transfection efficiency of nioplexes has been poorly investigated so far. It has been 

suggested that CME and macropinocytosis are correlated to the lysosomal fusion, which could 

partial or entirely degrade the content of their vesicles (Luzio et al., 2009; Xiang et al., 2012). 

Moreover, it has been described that there is a recycling process of the vesicles when 

macropinocytosis is involved (i.e. macropinosome is sent back to the cell exterior) (Lim and 

Gleeson, 2011). It also should be pointed out that CvME is mainly considered a non-digestive 

pathway. However, some findings suggest that this route is also involved in the lysosomal 

fusion (Kiss and Botos, 2009).  

In this regard, our results provided new views and insights into the relationship 

between intracellular trafficking and transfection efficiency of nioplexes. Squalene-containing 

nioplexes were largely internalized via macropinocytosis, exhibited minor lyso- somal 



accumulation and showed high transfection efficiency. On the opposite, macropinocytosis was 

weakly activated when ARPE- 19 cells were treated with poorly efficient cholesterol-containing 

nioplexes, which largely accumulated in lysosomes. Aside from clarifying the exact molecular 

aspects of this correlation, it seems that macropinocytosis could be a preferred internalization 

route of nioplexe formulations. This observation might explain the superior efficiency of 

nioplexes prepared with squalene (Fig. 4A bars, Sque) and provides a reasonable explanation 

for the low transfection efficiency of cholesterol-based nioplexes (Fig. 4A bars, Cho). Notably, 

this suggestion is in excellent agreement with previous findings (Cardarelli et al., 2012) 

showing that macropinocytosis is the main pathway of internalization of highly efficient 

liposome/ DNA complexes. In any case, further experiments with specific inhibitors of the 

pathways studied such as chlorpromazine, filipin or EIPA (ethylisopropylamiloride) could help 

us to clarify our hypothesis.  

Squalane-containing nioplexes exhibited an endocytic pattern similar to that of 

nioplexes prepared with squalene. Nevertheless, squalane-containing systems were less 

efficient (Fig. 4A bars, Squa) than their squalene-enriched counterpart (Fig. 4A bars, Sque). This 

result was likely due to less involvement of macro- pinocytosis resulting in larger colocalization 

of complexes with lysosomes (Fig. 6 B). In the absence of helper lipid, nioplexes were poorly 

efficient (Fig. 4A bars, None), but this was not due to accumulation within acidic lysosomes 

(Fig. 7, None). These results suggest that despite being able to avoid lysosomal degradation 

this nioplexe formulation was unable to release their cargo effectively, which can be supported 

by the agarose gel results, where high DNA condensation was observed (Fig. 3 lane 13).  

 

4. Conclusion  

In this study, we investigated the role played by the helper lipid on the transfection 

efficiency of four niosome formulations in ARPE-19 cells. Our results showed that the helper 

lipid does affect not only to the physico-chemical properties of both bare and DNA- loaded 

niosomes, but also to important biological processes intimately related with the final 

transfection efficiency. Collec-tively, our data pointed out that the helper lipid composition has 

a deep influence on the cellular uptake of nioplexes that, in turn, affects final the fate and 

transfection efficiency. Niosomes elaborated with squalene as helper lipid showed the highest 

efficiency to transfect ARPE-19 cells, which could be attributed mainly to their high cellular 

uptake and posterior entry pathways used, where macropinocytosis pathway and lysosomal 

elution played an important role. Overall, these studies bring new insights into the role of 

helper lipids towards the development of highly efficient niosome formulations as non-viral 

gene delivery vectors for the treatment of inherited retinal diseases. However, we have to 

consider that both internalization mechanisms and intracellular trafficking processes can be 

highly modified by interaction of gene carriers with biological fluids, even for retinal 

application. Therefore, the knowledge of these biological processes that affect to the final 

transfection efficiency in vivo conditions represents a real challenge for the scientific 

community in order to design novel gene delivery systems based on non-viral vectors.  
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Supporting Information 

 

Synthesis of the ionizable cationic amino lipid. All reactions were carried out under an 

inert atmosphere of argon. Flash column chromatography was performed on silica gel 

SDS 0.063–0.2 mm/70–230 mesh. 1H and 13C NMR spectra were recorded at 25 °C on a 

Varian Mercury 400 MHz spectrometer using deuterated solvents. Tetramethylsilane 

(TMS) was used as an internal reference (0 ppm) for 1H spectra recorded in CDCl3 and 

the residual signal of the solvent (77.1 ppm) for 13C spectra. Chemical shifts are 

reported in parts per million (ppm), coupling constants (J) in Hz and multiplicity as 

follows: s (singlet), t (triplet), and m (multiplet). Electrospray ionization mass spectra 

(ESI-MS) were recorded on a high resolution ESI-MS measured on an Agilent 1100 

LC/MS-TOF instrument (Servei d’Espectrometría de Masses, Universitat de 

Barcelona). 
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Reagents and Conditions  a, p-nitrophenyl chloroformate, DIEA, TFH:DCM (1:1), 4h, r.t.; b. 1, DMF, overnight, r.t.

a, b

 

Figure SI 1. Synthesis of cationic lipid 1-(2-dimethylaminoethyl)-3-[2,3-

di(tetradecoxy)propyl]urea. Amino lipid (1) (100 mg; 0.206 mmol) and p-nitrophenyl-

chloroformate (2.5 eq) were dissolved in a mixture of tetrahydrofurane: dichloromethane (1:1) 

(6 mL). The reaction was cooled at 0 ºC, and DIEA (2.5 eq) was carefully added dropwise. The 

solution was stirred for 4 hours at room temperature. The solvent was removed in vacuo, and 

the resultant crude was used in the next step without further purification. The yellow crude was 

dissolved in dimethylformamide (DMF) (3 mL), and the corresponding dimethylamine 

derivative (1.1 eq) was added dropwise. The reaction was stirred overnight at room temperature. 

Finally, DMF was removed under vacuum, and the resultant crude was purified by flash 



chromatography (DCM: MeOH 5% to 10%). Yield 65%; 1H -NMR (400 MHz, CDCl3) �3.44 

(m, 6H; 3 CH2-O); 3.26 (m, 3H; CH-N and CH2-O); 2.46 (m, 4H; N-CH2-CH2-N), 2.28 (s, 3H; 

N-CH3), 2.25 (s, 3H; N-CH3), 1.55 (m,. 2H; CH2-CH2), 1.25 (m, 46H; alkyl chain); 0.88 (t, J = 

6.7 Hz; 6H; 2 CH3); 
13C-NMR (125 MHz, CDCl3 � 161.1 (CO); 158.6 (CO), 71.7 (CH2-O), 

70.2 (CH2-O), 58.8 (CH2-O), 57.5 (CH-O), 45.0 (CH3-N), 41.9 (CO-CH2-N), 37.7 (CH2-N), 

35.2 (CH2-N), 31.8 (CH2-N), 30.0, 29.7, 29.6, 29.4, 29.3, 26.1, 22.6 (alkyl chain), 14.0 (CH3); 

ESI-MS for C31H65NO2 m/z 598.5808 (calculated) 598.5806 (M+H)+ (found). 

 

Figure SI 2. Flow cytometry histograms of transfected cells with nioplexes prepared with 

different helper lipids in ARPE-19 cells. Color code: Black) control cells, Red) nioplexes 

prepared with squalene (Sque), Blue) nioplexes prepared with cholesterol (Cho), Green) 

nioplexes prepared with squalane (Squa) and Yellow) nioplexes prepared without helper lipid 

(None). (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of the article). 

 



Figure SI 3. Flow cytometry histograms of cell uptake with nioplexes prepared with different 

helper lipids in ARPE-19 cells. Color code: Black) control cells, Red) nioplexes prepared with 

squalene (Sque), Blue) nioplexes prepared with cholesterol (Cho), Green) nioplexes prepared 

with squalane (Squa) and Yellow) nioplexes prepared without helper lipid (None). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of the article). 

 

Figure SI 4. Confocal image of the ARPE-19 cells in contact with nioplexes based on squalene 

at 5 min. The stained DNA-niosome complex is shown in red. For interpretation of the 

referenced color in this figure legend, the reader is referred to the web version of the article. 

 


