9 research outputs found

    Crystallization and Morphology of Triple Crystalline Polyethylene-b-poly(ethylene oxide)-b-poly(ε-caprolactone) PE-b-PEO-b-PCL Triblock Terpolymers

    Get PDF
    The morphology and crystallization behavior of two triblock terpolymers of polymethylene, equivalent to polyethylene (PE), poly (ethylene oxide) (PEO), and poly (ε-caprolactone) (PCL) are studied: PE227.1-b-PEO4615.1-b-PCL3210.4 (T1) and PE379.5-b-PEO348.8-b-PCL297.6 (T2) (superscripts give number average molecular weights in kg/mol and subscripts composition in wt %). The three blocks are potentially crystallizable, and the triple crystalline nature of the samples is investigated. Polyhomologation (C1 polymerization), ring-opening polymerization, and catalyst-switch strategies were combined to synthesize the triblock terpolymers. In addition, the corresponding PE-b-PEO diblock copolymers and PE homopolymers were also analyzed. The crystallization sequence of the blocks was determined via three independent but complementary techniques: differential scanning calorimetry (DSC), in situ SAXS/WAXS (small angle X-ray scattering/wide angle X-ray scattering), and polarized light optical microscopy (PLOM). The two terpolymers (T1 and T2) are weakly phase segregated in the melt according to SAXS. DSC and WAXS results demonstrate that in both triblock terpolymers the crystallization process starts with the PE block, continues with the PCL block, and ends with the PEO block. Hence triple crystalline materials are obtained. The crystallization of the PCL and the PEO block is coincident (i.e., it overlaps); however, WAXS and PLOM experiments can identify both transitions. In addition, PLOM shows a spherulitic morphology for the PE homopolymer and the T1 precursor diblock copolymer, while the other systems appear as non-spherulitic or microspherulitic at the last stage of the crystallization process. The complicated crystallization of tricrystalline triblock terpolymers can only be fully grasped when DSC, WAXS, and PLOM experiments are combined. This knowledge is fundamental to tailor the properties of these complex but fascinating materials.This research received funding from MINECO through projects MAT2017-83014-C2-1-P, from the Basque Government through grant IT1309-19, and from ALBA synchrotron facility through granted proposal u2020084441 (March 2020). We would like to thank the financial support provided by the BIODEST project; this project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 778092. GZ, VL, and NH wish to acknowledge the support of KAUST

    Sequential Crystallization and Multicrystalline Morphology in PE‑b‑PEO‑b‑PCL‑b‑PLLA Tetrablock Quarterpolymers

    Get PDF
    Unformatted post-print version of the accepted articleWe investigate for the first time the morphology and crystallization of two novel tetrablock quarterpolymers of polyethylene (PE), poly(ethylene oxide) (PEO), poly(ε-caprolactone) (PCL), and poly(L-lactide) (PLLA) with four potentially crystallizable blocks: PE18 7.1-b-PEO37 15.1-b-PCL26 10.4-b-PLLA19 7.6 (Q1) and PE29 9.5-b-PEO26 8.8-b-PCL23 7.6-b-PLLA22 7.3 (Q2) (superscripts give number average molecular weights in kg/mol, and subscripts give the composition in wt %). Their synthesis was performed by a combination of polyhomologation (C1 polymerization) and ring-opening polymerization techniques using a ″catalyst-switch″ strategy, either ″organocatalyst/metal catalyst switch″ (Q1 sample, 96% isotactic tetrads) or ″organocatalyst/ organocatalyst switch″ (Q2 sample, 84% isotactic tetrads). Their corresponding precursorstriblock terpolymers PE-b-PEO-b-PCL, diblock copolymers PE-b-PEO, and PE homopolymerswere also studied. Cooling and heating rates from the melt at 20 °C/min were employed for most experiments: differential scanning calorimetry (DSC), polarized light optical microscopy (PLOM), in situ small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS), and atomic force microscopy (AFM). The direct comparison of the results obtained with these different techniques allows the precise identification of the crystallization sequence of the blocks upon cooling from the melt. SAXS indicated that Q1 is melt miscible, while Q2 is weakly segregated in the melt but breaks out during crystallization. According to WAXS and DSC results, the blocks follow a sequence as they crystallize: PLLA first, then PE, then PCL, and finally PEO in the case of the Q1 quarterpolymer; in Q2, the PLLA block is not able to crystallize due to its low isotacticity. Although the temperatures at which the PEO and PCL blocks and the PE and PLLA blocks crystallize overlap, the analysis of the intensity changes measured by WAXS and PLOM experiments allows identifying each of the crystallization processes. The quarterpolymer Q1 remarkably self-assembles during crystallization into tetracrystalline banded spherulites, where four types of different lamellae coexist. Nanostructural features arising upon sequential crystallization are found to have a relevant impact on the mechanical properties. Nanoindentation measurements show that storage modulus and hardness of the Q1 quarterpolymer significantly deviate from those of the stiff PE and PLLA blocks, approaching typical values of compliant PEO and PCL. Results are mainly attributed to the low crystallinity of the PE and PLLA blocks. Moreover, the Q2 copolymer exhibits inferior mechanical properties than Q1, and this can be related to the PE block within Q1 that has thinner crystal lamellae according to its much lower melting point.This work has received funding from MINECO through projects MAT2017-83014-C2-1-P and MAT2017-88382-P, from the Basque Government through grant IT1309-19, and from the ALBA synchrotron facility through granted proposal u2020084441 (March 2020). We would like to thank the financial support provided by the BIODEST project; this project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 778092

    Alternating Gyroid Network Structure in an ABC Miktoarm Terpolymer Comprised of Polystyrene and Two Polydienes

    Get PDF
    The synthesis, molecular and morphological characterization of a 3-miktoarm star terpolymer of polystyrene (PS, M¯¯¯¯n = 61.0 kg/mol), polybutadiene (PB, M¯¯¯¯n = 38.2 kg/mol) and polyisoprene (PI, M¯¯¯¯n = 29.2 kg/mol), corresponding to volume fractions (φ) of 0.46, 0.31 and 0.23 respectively, was studied. The major difference of the present material from previous ABC miktoarm stars (which is a star architecture bearing three different segments, all connected to a single junction point) with the same block components is the high 3,4-microstructure (55%) of the PI chains. The interaction parameter and the degree of polymerization of the two polydienes is sufficiently positive to create a three-phase microdomain structure as evidenced by differential scanning calorimetry and transmission electron microscopy (TEM). These results in combination with small-angle X-ray scattering (SAXS) and birefringence experiments suggest a cubic tricontinuous network structure, based on the I4132 space group never reported previously for such an architecture

    Synthesis and Self-Assembly of Amphiphilic Triblock Terpolymers with Complex Macromolecular Architecture

    No full text
    Two star triblock terpolymers (PS-<i>b</i>-P2VP-<i>b</i>-PEO)<sub>3</sub> and one dendritic-like terpolymer [PS-<i>b</i>-P2VP-<i>b</i>-(PEO)<sub>2</sub>]<sub>3</sub> of PS (polystyrene), P2VP (poly­(2-vinylpyridine)), and PEO (poly­(ethylene oxide)), never reported before, were synthesized by combining atom transfer radical and anionic polymerizations. The synthesis involves the transformation of the −Br groups of the previously reported Br-terminated 3-arm star diblock copolymers to one or two −OH groups, followed by anionic polymerization of ethylene oxide to afford the star or dendritic structure, respectively. The well-defined structure of the terpolymers was confirmed by static light scattering, size exclusion chromatography, and NMR spectroscopy. The self-assembly in solution and the morphology in bulk of the terpolymers, studied by dynamic light scattering and transmission electron microscopy, respectively, reveal new insights in the phase separation of these materials with complex macromolecular architecture

    Poly(vinylidene fluoride)-based Complex Macromolecular Architectures: From Synthesis to Properties and Applications

    No full text
    International audienceThis review highlights the synthesis, properties and applications, as well as the potential, of the rarely appeared in the literature poly(vinylidene fluoride) (PVDF)-based complex macromolecular architectures (CMAs). PVDF, the second in production fluoropolymer, is an attractive material due to its outstanding properties (high thermal stability and chemical inertness) along with its piezo-, pyro-and ferro-electrical performance. So far, although studies on the PVDF-based CMAs are limited, there is a growing interest in the synthesis/properties of non-linear structures (graft, miktoarm star, star and dendrimers), as well as their potential hightech applications including drug/gene delivery, electronics and energy harvesting devices. The aim of this review is to present the primary strategies for the synthesis of PVDF-based polymer materials with CMAs and critically discuss the generation of avenues that may facilitate their commercialization. We anticipate shortly that PVDF-based CMA polymers will play a progressively important role in materials science and nanotechnology, both in academia and industry

    Synthesis, characterization and self-assembly of linear and miktoarm star copolymers of exclusively immiscible polydienes

    No full text
    International audienceLinear and non-linear copolymers of the PB-b-PI sequence [PB: polybutadiene of high 1,4-microstructure (∼92%) and PI: polyisoprene of high 3,4-microstructure (∼55–60%)] and their corresponding miktoarm star copolymers of the PB(PI3,4)2 and PB(PI3,4)3 type were synthesized by combining anionic polymerization and selective chlorosilane chemistry. Molecular characteristics, thermal properties and structure/properties relationship are reported for the specific copolymers and especially the self-assembly is of major importance and interest due to the nature of the blocks. The identical electron densities between the two polydienes led to impossible morphological characterization through small angle X-ray scattering (SAXS) and only transmission electron microscopy results verify the adopted morphology for each copolymer, justifying the assumption that the segment–segment interaction parameter between the two polydienes of high 1,4-microstructure (∼92%) for the PB and ∼55–60% 3,4-microstructure for the PI is well above zero. The consistency of the bulk morphology results of this study compared with those of the extensively studied system of the PS(PI)n=1,2,3 type (PS: polystyrene), were unexpectedly coherent. High chain flexibility provided by the two polydiene segments, leads to promising properties unattainable from corresponding thermoplastic triblock copolymers of these polydienes with PS (PS-b-PI-b-PS, PS-b-PB-b-PS), especially for rheological studies
    corecore