1,234 research outputs found

    A search for pre- and proto-brown dwarfs in the dark cloud Barnard 30 with ALMA

    Full text link
    In this work we present ALMA continuum observations at 880 Ό\mum of 30 sub-mm cores previously identified with APEX/LABOCA at 870Ό\mum in the Barnard 30 cloud. The main goal is to characterize the youngest and lowest mass population in the cloud. As a result, we report the detection of five (out of 30) spatially unresolved sources with ALMA, with estimated masses between 0.9 and 67 MJup_{\rm Jup}. From these five sources, only two show gas emission. The analysis of multi-wavelength photometry from these two objects, namely B30-LB14 and B30-LB19, is consistent with one Class II- and one Class I low-mass stellar object, respectively. The gas emission is consistent with a rotating disk in the case of B30-LB14, and with an oblate rotating envelope with infall signatures in the case of LB19. The remaining three ALMA detections do not have infrared counterparts and can be classified as either deeply embedded objects or as starless cores if B30 members. In the former case, two of them (LB08 and LB31) show internal luminosity upper limits consistent with Very Low Luminosity objects, while we do not have enough information for LB10. In the starless core scenario, and taking into account the estimated masses from ALMA and the APEX/LABOCA cores, we estimate final masses for the central objects in the substellar domain, so they could be classified as pre-BD core candidates.Comment: Published in A&

    Voltage rectification by a SQUID ratchet

    Full text link
    We argue that the phase across an asymmetric dc SQUID threaded by a magnetic flux can experience an effective ratchet (periodic and asymmetric) potential. Under an external ac current, a rocking ratchet mechanism operates whereby one sign of the time derivative of the phase is favored. We show that there exists a range of parameters in which a fixed sign (and, in a narrower range, even a fixed value) of the average voltage across the ring occurs, regardless of the sign of the external current dc component.Comment: 4 pages, 4 EPS figures, uses psfig.sty. Revised version, to appear in Physical Review Letters (26 August 1996

    Dissipation Enhanced Asymmetric Transport in Quantum Ratchets

    Full text link
    Quantum mechanical motion of a particle in a periodic asymmetric potential is studied theoretically at zero temperature. It is shown based on semi-classical approximation that the tunneling probability from one local minimum to the next becomes asymmetric in the presence of weak oscillating field, even though there is no macroscopic field gradient in average. Dissipation enhances this asymmetry, and leads to a steady unidirectional current, resulting in a quantum ratchet system.Comment: 12 pages, 2 Figures, submitted to J. Phys. Soc. Jp

    Directed current due to broken time-space symmetry

    Full text link
    We consider the classical dynamics of a particle in a one-dimensional space-periodic potential U(X) = U(X+2\pi) under the influence of a time-periodic space-homogeneous external field E(t)=E(t+T). If E(t) is neither symmetric function of t nor antisymmetric under time shifts E(t±T/2)≠−E(t)E(t \pm T/2) \neq -E(t), an ensemble of trajectories with zero current at t=0 yields a nonzero finite current as t→∞t\to \infty. We explain this effect using symmetry considerations and perturbation theory. Finally we add dissipation (friction) and demonstrate that the resulting set of attractors keeps the broken symmetry property in the basins of attraction and leads to directed currents as well.Comment: 2 figure

    Quantum Ratchets

    Full text link
    The concept of thermal ratchets is extended to the system governed by quantum mechanics. We study a tight-binding model with an asymmetric periodic potential contacting with a heat bath under an external oscillating field as a specific example of quantum ratchet. Dynamics of a density operator of this system is studied numerically by using the quantum Liouville equation. Finite net current is found in the non-equilibrium steady state. The direction of the current varies with parameters, in contrast with the classical thermal ratchets.Comment: 7 pages, Latex, 4 ps figures; No change in the text by this replacement. only the figures are replaced with higher quality ones (but smaller size

    Chemical-potential standard for atomic Bose-Einstein condensates

    Get PDF
    When subject to an external time periodic perturbation of frequency ff, a Josephson-coupled two-state Bose-Einstein condensate responds with a constant chemical potential difference ΔΌ=khf\Delta\mu=khf, where hh is Planck's constant and kk is an integer. We propose an experimental procedure to produce ac-driven atomic Josephson devices that may be used to define a standard of chemical potential. We investigate how to circumvent some of the specific problems derived from the present lack of advanced atom circuit technology. We include the effect of dissipation due to quasiparticles, which is essential to help the system relax towards the exact Shapiro resonance, and set limits to the range of values which the various physical quantities must have in order to achieve a stable and accurate chemical potential difference between the macroscopic condensates.Comment: 13 pages, 4 figure

    Quantum Dynamics of Three Coupled Atomic Bose-Einstein Condensates

    Get PDF
    The simplest model of three coupled Bose-Einstein Condensates (BEC) is investigated using a group theoretical method. The stationary solutions are determined using the SU(3) group under the mean field approximation. This semiclassical analysis using the system symmetries shows a transition in the dynamics of the system from self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics are investigated by examination of the stable points and our analysis shows the structure of the stable points depends on the ratio of the condensate coupling to the particle-particle interaction, undergoes bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which also displays the dynamical transition. The quantum case has collapse and revival sequences superposed on the semiclassical dynamics reflecting the underlying discreteness of the spectrum. Non-zero circular current states are also demonstrated as one of the higher dimensional effects displayed in this system.Comment: Accepted to PR

    A left-handed simplicial action for euclidean general relativity

    Get PDF
    An action for simplicial euclidean general relativity involving only left-handed fields is presented. The simplicial theory is shown to converge to continuum general relativity in the Plebanski formulation as the simplicial complex is refined. This contrasts with the Regge model for which Miller and Brewin have shown that the full field equations are much more restrictive than Einstein's in the continuum limit. The action and field equations of the proposed model are also significantly simpler then those of the Regge model when written directly in terms of their fundamental variables. An entirely analogous hypercubic lattice theory, which approximates Plebanski's form of general relativity is also presented.Comment: Version 3. Adds current home address + slight corrections to references of version 2. Version 2 = substantially clarified form of version 1. 29 pages, 4 figures, Latex, uses psfig.sty to insert postscript figures. psfig.sty included in mailing, also available from this archiv

    Early Science with the Large Millimeter Telescope: an energy-driven wind revealed by massive molecular and fast X-ray outflows in the Seyfert Galaxy IRAS 17020+4544

    Full text link
    We report on the coexistence of powerful gas outflows observed in millimeter and X-ray data of the Radio-Loud Narrow Line Seyfert 1 Galaxy IRAS 17020+4544. Thanks to the large collecting power of the Large Millimeter Telescope, a prominent line arising from the 12CO(1-0) transition was revealed in recent observations of this source. The complex profile is composed by a narrow double-peak line and a broad wing. While the double-peak structure may be arising in a disk of molecular material, the broad wing is interpreted as the signature of a massive outflow of molecular gas with an approximate bulk velocity of -660 km/s. This molecular wind is likely associated to a multi-component X-ray Ultra-Fast Outflow with velocities reaching up to ~0.1c and column densities in the range 10^{21-23.9} cm^-2 that was reported in the source prior to the LMT observations. The momentum load estimated in the two gas phases indicates that within the observational uncertainties the outflow is consistent with being propagating through the galaxy and sweeping up the gas while conserving its energy. This scenario, which has been often postulated as a viable mechanism of how AGN feedback takes place, has so far been observed only in ULIRGs sources. IRAS 17020+4544 with bolometric and infrared luminosity respectively of 5X10^{44} erg/s and 1.05X10^{11} L_sun appears to be an example of AGN feedback in a NLSy1 Galaxy (a low power AGN). New proprietary multi-wavelength data recently obtained on this source will allow us to corroborate the proposed hypothesis.Comment: Accepted for publication on ApJ Letters, 9 pages, 4 figure
    • 

    corecore