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Quantum dynamics of three coupled atomic Bose-Einstein condensates
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The simplest model of three coupled Bose-Einstein condensates is investigated using a group theoretical
method. The stationary solutions are determined using the SU~3! group under the mean-field approximation.
This semiclassical analysis, using system symmetries, shows a transition in the dynamics of the system from
self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics
are investigated by examination of the stable points, and our analysis shows that the structure of the stable
points depends on the ratio of the condensate coupling to the particle-particle interaction, and undergoes
bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which
also displays a dynamical transition. The quantum case has collapse and revival sequences superimposed on
the semiclassical dynamics, reflecting the underlying discreteness of the spectrum. Nonzero circular current
states are also demonstrated as one of the higher-dimensional effects displayed in this system.
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I. INTRODUCTION

The recent creation of neutral atom Bose-Einstein c
densates ~BEC’s! @1–5# stimulated theoretical researc
aimed at understanding this new state of matter. Model
two coupled BEC’s in a two-mode approximation are co
sidered a tractable system when the total particle numbe
conserved, and eigenstates of the two-well system are
beled by the particle number difference between the we
Two coupled BEC’s in a symmetric double-well potent
were analyzed with the use of the SU~2! group@6,7# to show
the dynamical transition from self-trapping in one well
delocalized oscillation through both potential wells due
the nonlinear particle interaction. This model in the wea
coupling region was further shown to demonstratep-phase
oscillations@8#, while a semiclassical functional expressio
for the three-dimensional Josephson coupling energy was
rived @9#. This model, however, can be considered as a s
cial case because of its simplicity and low dimensional
Any extension of this model significantly increases the n
linearity, while higher-dimensional effects increase the co
plexity of the model structure.

These more complex systems are of interest, as the ri
dynamics and model structure allows us to treat quan
states with nonzero currents, for instance. In the limit o
large mode numbern, Bose-Hubbard-type approaches a
useful when using a mean-field approximation@10#. How-
ever, systems with intermediate numbers of modes, 2,n
,100, are complex, and models must exploit system s
metries in order to obtain solutions. The symmetries of th
groups are the SU(n) group symmetries. In this paper w
analyze a system of three coupled BEC’s using the oper
algebra of SU~3!. This could be realized as three spatia
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separated atomic Bose-Einstein condensates, as illustrat
the right corner of Fig. 1. Alternatively it could describ
three condensates, occupying a single trap and distinguis
by three internal hyperfine atomic states. The spatially se
rated system could represent a BEC confined in a th
dimensional trapping potential with three harmonic minim
in the x-y plane. Tunneling is possible between all thr
minima. This symmetric triple-well system represents t
simplest two-dimensional generalization of the on
dimensional double well@6#, which allows states of nonzer
angular momentum. If the nonlinear interaction between
atoms is not too large~see Ref.@6#! ~that is, the total number
of atomsN is not too large!, we can describe this system

FIG. 1. Phase-space orbits of the semiclassical dynamics
jected on they2-x2 plane, for various values ofr. The total number
of atomsN in the system was 53107. r * 51/3 is the critical value
for localization. The transition from localized to delocalized d
namics is apparent. The subfigure in the right upper corner
schematic representation of three spatially distinct Bose-Eins
condensates located at the minima of a potential with triangle s
metry. The tunneling coupling constant between all the wells
equal and nonzero.
©2000 The American Physical Society04-1
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using a minimum of three Bose modes for the quantum fie

ĉ~x,y,t !5(
j 51

3

@cj~ t !uj~x,y!1cj
†~ t !uj~x,y!* #, ~1!

whereuj (x,y) are an appropriate set of orthonormal sing
particle mode functions for this potential, and the annihi
tion and creation operatorscj and cj

† satisfy the equal-time
commutation relations

@ci ,cj
†#5d i j . ~2!

As in the double-well case@6#, we can choose approxi
mate single-particle mode functions which are localiz
single-particle ground states for each of the three wells@11#.
We further assume that these three lowest localized state
sufficiently well separated from higher-energy states, a
that interactions between particles do not change this b
property of the system configuration. Finally, we assume
the total number of particlesN is conserved. These assum
tions allow us to treat this model system in a three mo
approximation. Hence the many-body Hamiltonian desc
ing atomic BEC’s@12# can be written in terms of the mod
operators as

Ĥ5v(
j 51

3

ĉ j
†ĉ j1V (

j ,k51,j Þk

3

ĉ j
†ĉk1x(

j 51

3

ĉ j
†ĉ j

†ĉ j ĉ j , ~3!

wherev is the mode frequency,x(<0) is the two-particle
interaction strength, andV(<0) is the tunneling frequency
The conditionx<0 corresponds to atoms with attractive i
teractions. This is the Hamiltonian of our model system
this paper.

II. SU„3… GROUP APPROACH

This section shows a group theoretical treatment of a s
tem with the Hamiltonian specified in Eq.~3!. In order to
describe this system with SU~3! generators, we extend th
Schwinger boson method@13# and we define the eight gen
erators of SU~3! $Ẑk ,Ŷk ,X̂k% as

X̂15 ĉ1
†ĉ12 ĉ2

†ĉ2 Ŷki ~ ĉk
†ĉ j2 ĉ j

†ĉk!,

X̂25
1

3
~ ĉ1

†ĉ11 ĉ2
†ĉ222ĉ3

†ĉ3! Ẑk5 ĉk
†ĉ j1 ĉ j

†ĉk , ~4!

where k51,2,3 andj 5(k11)mod311. We note that the
two operatorsX̂i commute with each other.X̂1 and X̂2 rep-
resent particle distributions projected on they and x axes,
respectively, in the right corner of Fig. 1, andŶ11Ŷ21Ŷ3
corresponds to angular momentum in this system. The m
important relation which the generators satisfy is the Casi
invariant of SU~3!, 4N̂(N̂/311), whereN̂ is the total num-
ber operator,N̂5( j 51

3 ĉ j
†ĉ j . The operator algebra implie

three further important identities:
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S 2N̂

3
1X̂21X̂1D S 2N̂

3
1X̂22X̂1D 1

4N̂

3
12X̂25Ŷ1

21Ẑ1
2 ,

2S 2N̂

3
1X̂22X̂1D S N̂

3
2X̂2D 1

4N̂

3
2X̂22X̂15Ŷ2

21Ẑ2
2 ,

~5!

2S 2N̂

3
1X̂21X̂1D S N̂

3
2X̂2D 1

4N̂

3
2X̂21X̂15Ŷ3

21Ẑ3
2 .

With the use of SU~3! generators, we can represent Ham
tonian ~3! in the form

Ĥ5V~ Ẑ11Ẑ21Ẑ3!1
x

2
~X̂1

213X̂2
2!. ~6!

Here we ignore constant terms involving the conserved t
number of particlesN̂ which do not change the dynamics o
the system.

We now specifically consider the case withV50 andx
<0. Such condensates are necessarily limited to a sm
number of atoms@14#. For attractive forces, the ground sta
is threefold degenerate, and in the occupation number re
sentation (um,n,N2(m1n)&5um&1^ un&2^ uN2(m1n)&3)
these states are

ue1&5u0,0,N&, ue2&5uN,0,0&, ue3&5u0,N,0&. ~7!

For all these states the ground-state energy isE052xN2/3.

III. SEMICLASSICAL DYNAMICS

We treat the model of three coupled BEC’s using t
semiclassical mean-field approximation. Ignoring corre
tions between all operators, and taking expectation valu
converts the eight operator differential equations for
SU~3! generators in the quantum system into eight differe
tial equations for real variables in the semiclassical system
is, however, very difficult to solve the full eight dimension
equations analytically. This leads us to consider a spec
simplified subspace of the set of eight equations by tak
the symmetric condition,x150. The nature of this condition
will be explained in the subsection below, as to see the
namics clearly we first need to scale the semiclassical v
ables.

The expectation values of generators are distinguished
their subscripts, while the expectation value of the total nu
ber operator isN. It is convenient to scale all the semicla
sical averages byN. Thus we define

xj5
^X̂j&
N

, yj5
^Ŷj&
N

, zj5
^Ẑj&
N

. ~8!

The equations of motion can be derived from the Heisenb
equations of motion of the Hamiltonian@Eq. ~6!#, by factor-
ing all higher-order moments.

The three degenerate ground states forV50 can be as-
sociated with particular initial conditions in the semiclassic
4-2
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limit. To see this we first note that if we take matrix elemen
of both sides of the three operator identities in Eq.~5!, we
find that

^ei uŶj
21Ẑj

2uei&5~12d i j !2N. ~9!

Using the commutation relations for$Ẑi ,Ŷi ,X̂i% and the cor-
responding uncertainty relations with respect to the gro
states, it is possible to show that the ground-state varian
in $Ẑi ,Ŷi% scale asN for N@1. In physical terms this mean
that the relative fluctuations in these variables go to zero
N→`, as expected for a semiclassical limit. This indica
that in the semiclassical limit we may approximate

^Ẑi
2&/N2'^Ẑi&

2/N25zi
2 , ~10!

^Ŷi
2&/N2'^Ŷi&

2/N25yi
2 . ~11!

The resulting semiclassical equations will be analyz
from two perspectives. We first show a dynamical transit
between self-trapping and delocalization when initial con
tions are given by Eq.~7!. This analysis determines the crit
cal point for the dynamics transition. Second, we consi
the dependence of the stable points on the ratio of the c
pling between condensates to the particle-particle interac
strength, and show bifurcations in the set of the stable po

Dynamics transition

Using these relations in Eq.~9!, we can construct semi
classical correspondences for each of the ground states.
is shown below:

ue1& ue2& ue3&

y1
21z1

250 y2
21z2

250 y3
21z3

350
x150 x151 x1521
x2522/3 x251/3 x251/3

It is easy to verify that these curves are invariant under se
classical dynamics withV50. As each of the ground state
is equivalent, up to a rotation in the phase space, we
now restrict the discussion toue1& ~a condensate localize
initially in the third well! without loss of generality, and
examine the dynamics whenVÞ0.

Use of the initial stateue1& naturally restricts the dynam
ics due to system symmetries, allowing us to study an a
lytically solvable subsystem. The initial stateue1& and
Hamiltonian ~6! are symmetric to permutations of wells
and 2, then the resulting dynamics also satisfy this sym
try. This ensures thatx150 for all time in the semiclassica
limit, which we previously referred to as the symmetric co
dition. This symmetric condition specifies the subspace
which the reduced system dynamics lies, giving the ad
tional conditions,y150, y252y3, and z25z3. The semi-
classical dynamics is governed by the following fou
dimensional system:
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ẋ2522Vy2 ,

ẏ25V~3x21z12z2!23xNz2x2 ,
~12!

ż1522Vy2 ,

ż25Vy213xNx2y2 .

The initial stateue1& gives the semiclassical system the initi
conditions

x2~0!522/3, ~13!

yi~0!5zi~0!50.

The semiclassical dynamics governed by the equations
motion ~12! is numerically shown in Fig. 1.

Figure 1 shows a transition from localization to glob
oscillation, and this dynamics change can be explained
the stable point analysis. This reduced system is integra
as these equations satisfy two constants of motion,

V~z112z2!1
3xNx2

2

2
5H/N, ~14!

3x2
212~y2

21z2
2!1z1

254/3, ~15!

which correspond to energy and total number conservat
respectively. The latter constant@Eq. ~15!# follows from two
stricter constraints

S 2

3
1x2D 2

5z1
2 , ~16!

2S x21
1

6D 2

1y2
21z2

25
1

2
, ~17!

which are derived from Eq.~5! with the symmetric condition
in the semiclassical limit.

The equations of motion with the chosen initial conditio
may be solved explicitly as a function ofx2, and depend on
only one parameter, the ratio of the coupling constantV to
the interaction strengthx:

r 5
V

Nx
~>0!. ~18!

The solutions are

z1~ t !5x2~ t !1
2

3
,

z2~ t !52
x2~ t !

2
2

3x2~ t !2

4r
1S 2

1

3
1

1

3r D , ~19!

y2~ t !25 f @x2~ t !#,

where
4-3
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f ~x2~ t !!52Fa~r !2S x2~ t !1
r

3D 2 3

4r G
2

1
2r

3 S x2~ t !1
r

3D S 22
1

r D1B~r !, ~20!

and where the integration constants are given by

a~r !52
4r

3
1

~r 22!2

12r
, ~21!

B~r !5S 4r

3 D 2

2
2

9
~2r 21!~r 22!. ~22!

The solutions are oscillatory, and only exist for22/3
<x2<1/3, and are strongly dependent on the roots of
function f (x). f (x2) is fourth order in terms ofx2 and can
have up to four real roots. For increasingr, the root structure
of f (x2) changes. To really understand these changes
instructive to look at the fixed point structure of system~12!.
If all the derivatives of the equations of motion~12! are zero,
then,

y250,
~23!

23x22z11z21
3

r
z2x250.

Taking the positive root forz1 in constraint~16!, z15x2
12/3, the second equation can be written

24x21z21
3

r
z2x22

2

3
50. ~24!

So the fixed points are the crossing points of this equa
with the constraint

2S x21
1

6D 2

1z2
25

1

2
, ~25!

obtained by applyingy250 to constraint~17!. Together,
these result in the following fourth-order ploynomial inz2:

18

r 2 S z22
2

3D S z2
31

2

3
~124r !z2

222r ~12r !z21
4r 2

3 D50.

~26!

Figure 2 shows curves@Eqs. ~24! and ~25!# in the x2-z2
plane for various values ofr. The first factor of Eq.~26!
gives us the pointA (x50,z25 2

3 ). For larger r only one
branch of the hyperbola@Eq. ~24!# intersects the constrain
and there are just two elliptic fixed points—one atA and one
in the third quadrant. The solutions with initial conditio
x252 2

3 are far away from the elliptic fixed points, and pe
form large delocalised oscillations on the sphere@Eq. ~17!#.
A projection of one such solution is shown in Fig. 1 forr
50.52. Asr is decreased, a second branch touches the
straint atC Fig. ~2!.
01360
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This occurs when the second factor in Eq.~26! has a
double root atr 50.507425. Two new fixed points, a sadd
and a center, then appear, and move apart asr is decreased
away from 0.507425. The stable and unstable manifolds
the saddle intersect, forming a lopsided figure-eight-l
separatrix with the new elliptic fixed point in the one lob
and the elliptic fixed point atA in the other. Whenr is 1

2 the
hyperbola reduces to the linesz25 2

3 and x252 1
6 , and the

solutions in (x2 ,y2) space are symmetrical aboutx252 1
6 . If

r is further decreased the separatrix approaches our in
condition @Eq. ~13!#. At r 5 1

3 the initial condition actually
lies on the separatrix. This occurs when the unstable fi
point lies on the solution curve@Eq. ~19!#, which amounts to
looking for a double root off (x2). If we let u5x21(r /3),
then

f S u2
r

3D52S a~r !2
3u2

4r D 2

1
2u

3
~2r 21!1B~r !.

~27!

and we requiref 50 and f 850. f 850 gives

u25
4r

9
@a~r !2A4a~r !223B~r !#, ~28!

which when substituted intof 50 gives only one real solu
tion atr * 51/3, x250. Now for r . 1

3 the solutions lie within
the separatrix, and so asr is decreased through13 the oscil-
lations suddenly reduce to half their former size, as can
clearly seen in Fig. 1.

In the physical space of the potential, then, the conden
remains localized at the bottom of the first well,x252 2

3 , for
r 50. As we increaser from zero,x2(t) begins to oscillate.
In thex2-y2 plane, the point is replaced by small oscillation
within the separatrix, which pass throughx2522/3. This is
referred to as dynamical localization. Even though the c
pling between wells is present, the nonlinear interaction
tween particles prevents the condensate from moving a
from its initially localized state. Eventually, for a critica

FIG. 2. Ther dependence of the stable points. Each hyperbo
curve shows Eq.~24! for different r ’s, while the ellipse represent
constraint~25!. Point A is a stable point for anyr. Point B shows
when Eq.~24! collapses into the two lines, and pointC is the unique
point of tangential contact to the ellipse.
4-4
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FIG. 3. Time evolution ofx2(t) in the semi-
classical regime vs time below~a! and above~b!
the critical valuer * 51/3 for localization.~a! cor-
responds to the below-threshold regime withr
50.283, while ~b! corresponds to the above
threshold regime withr 50.506. The number of
atoms is fixed atN550, and the timet is normal-
ized byV.
th
-

la

lo
th

te
s
e
-

’
u
e

r

y

t
h

itia

th

lly

t

the
l-
the
al
ses
rise
ite
two

his
For

an-

en-

c to
-

ero,
m
s of

um-
value ofr 5
1
3 the orbit in thex2-y2 plane extends across bo

half-planes for positive and negativex2 values, and the con
densate is no longer localized.

In Fig. 1 we show the phase-space orbits of the semic
sical dynamics projected onto thex2-y2 plane for various
values of the parameterr. The initial conditions correspond
to a condensate localized in well 3. The transition from
calized to delocalized motion is seen when the orbit in
phase space extends into thex2.0 half of the plane. In Fig.
3 we plot x2(t) as a function of time for the condensa
initially localized in well 3, with the same initial condition
as in Fig. 1 for two values ofr, one above and below th
critical valuer * for localization. The transition from local
ized to delocalized oscillations is apparent.

IV. QUANTUM DYNAMICS

In this section we treat the model of three coupled BEC
model fully quantum mechanically, and numerically calc
late the time evolution of the particle distribution with th
initial condition ue1&. For a fixed total atom numberN̂, a
suitable basis of the system Hilbert space is the numbe
eigenstates un,m,N2(n1m)& which are simultaneous
eigenstates of the generatorsX̂1 and X̂2 of the Abelian sub-
algebra of SU~3!. The unitary evolution operator is given b
U(t)5exp@2iHt#, whereH is specified by Eq.~6!. The uni-
tary evolution matrix is then computed, and the initial sta
uc(0)&5ue1& is then propagated forward in time. At eac
time step we compute the averages of^X̂1& and^X̂2&. These
averages show the particle distribution projected on they and
x axes in Fig. 1, respectively. However, because of the in
conditions for stateuc(0)&, the average of̂ X̂1& does not
change and in fact remains zero. It is not considered fur
here.

Figure 4 shows the evolution of a condensate initia
localized in stateue1&, with the number of atoms fixed atN
550. For short times we see the same oscillations as in
01360
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corresponding semiclassical case, both below and above
critical valuer * . The oscillations of the quantum mean va
ues decay due to the intrinsic quantum fluctuations in
number of atoms in each individual well, while the tot
particle number in the system remains fixed. The collap
and revivals of the oscillations in the quantum system a
from the discrete nature of the eigenvalue spectrum for fin
atom number. Such phenomena were also observed in
coupled condensates@6#.

One of the interesting higher-dimensional features of t
system is the existence of nonzero circular current states.
r 50, the system has threefold-degenerate ground statesue1&,
ue2&, and ue3&, and superpositions of those states create
other set of orthonormal ground states given as

ug1&5
1

A3
~ ue1&1ue2&1ue3&),

ug2&5
1

A3
~e2 i2p/3ue1&1ue2&1ei2p/3ue3&), ~29!

ug3&5
1

A3
~e2 i2p/3ue1&1ei2p/3ue2&1ue3&).

These states are invariant under 2p/3 rotations due to system
symmetries, as discussed in Ref.@15#. Taking the stateug2&,
we examine the quantum dynamics of the angular mom
tum Ŷs5Ŷ11Ŷ21Ŷ3. ~The stateug3& gives the same dy-
namics; however, since these states are antisymmetri
each other, clockwise motion inug2& corresponds anticlock
wise motion inug3&.! For r 50, the stateug2& is the ground
state, and the average angular momentum remains z
though for nonzeror a nonzero average angular momentu
appears, as seen in Fig. 5. This shows quantum dynamic
the average angular momentum normalized by the total n
ber N for two different values ofr. For smallr the nonzero
ith
FIG. 4. The quantum dynamics of^X̂2& vs
time below ~a! and above~b! the critical value
r * 51/3 for localization.~a! corresponds to the
below-threshold regime withr 50.283, while~b!
corresponds to the above-threshold regime w
r 50.506. The number of atoms is fixed atN
550, and the time is normalized byV.
4-5
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FIG. 5. The quantum dynamics of^Ŷs&/N vs

time with the initial stateug2&, where Ŷs5Ŷ1

1Ŷ21Ŷ3 is the angular momentum. The angul
momentum for smallr 50.5 ~a! fluctuates, while
nonzero circular motion appears in~b! for larger
r 51.3. The number of atoms is fixed atN550,
and the time is normalized byV.
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angular momentum does not develop into any stable circ
motion @Fig. 5~a!#, while circular motion can be establishe
for large r @Fig. 5~b!#, and becomes increasingly stable f
larger r.

V. DISCUSSION AND CONCLUSION

In this paper we have shown how the generators of SU~3!
can be used to describe the quantum and semiclassica
namics of three symmetrically coupled atomic Bose-Einst
condensates. By taking expectation values of the Heisen
equations of motion, and factoring all higher-order momen
we can derive the semiclassical mean-field equations.
nonlinear terms arising from hard collisions lead to a d
namical bifurcation in the semiclassical dynamics as the t
neling strength is increased, reflecting a transition from
calized dynamics to tunneling currents. Ther dependence o
the system is much more complicated than that found for
coupled BEC’s. Ther dependence of the stationary solutio
in this paper constitutes only a small part of the total co
an

et

n
v

n,

E

s.

hy
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plexity of this system and only some of the higher dime
sional effects. Our quantum treatment verified the dynam
transition found in the semiclassical analysis. This mode
three coupled BEC’s is the simplest model to have nonz
circular current states, and we have shown that nonzero
cular motion can appear given appropriate initial conditio

The analysis of this paper focused on comparing the se
classical dynamics with the evolution of quantum mean v
ues. This restricted analysis naturally suggests a further
amination of the dynamics of full quantum states. Howev
in order to examine full quantum states, it is necessary to
more powerful group theoretic tools, and this will be th
subject of a future paper.
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