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Quantum dynamics of three coupled atomic Bose-Einstein condensates
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The simplest model of three coupled Bose-Einstein condensates is investigated using a group theoretical
method. The stationary solutions are determined using th@)Sioup under the mean-field approximation.
This semiclassical analysis, using system symmetries, shows a transition in the dynamics of the system from
self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics
are investigated by examination of the stable points, and our analysis shows that the structure of the stable
points depends on the ratio of the condensate coupling to the particle-particle interaction, and undergoes
bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which
also displays a dynamical transition. The quantum case has collapse and revival sequences superimposed on
the semiclassical dynamics, reflecting the underlying discreteness of the spectrum. Nonzero circular current
states are also demonstrated as one of the higher-dimensional effects displayed in this system.
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[. INTRODUCTION separated atomic Bose-Einstein condensates, as illustrated in

the right corner of Fig. 1. Alternatively it could describe
The recent creation of neutral atom Bose-Einstein conthree condensates, occupying a single trap and distinguished
densates(BEC's) [1-5] stimulated theoretical research by three internal hyperfine atomic states. The spatially sepa-

aimed at understanding this new state of matter. Models o(rfi‘ted system could represent a BEC confined in a three-

L o mensional trapping potential with three harmonic minima
two coupled BEC's in a two-mode approximation are con-j, o x-y plane. Tunneling is possible between all three

sidered a tractable system when the total particle number i inima. This symmetric triple-well system represents the
conserved, and eigenstates of the two-well system are lajmplest two-dimensional generalization of the one-
beled by the particle number difference between the wellsdimensional double we[l6], which allows states of nonzero
Two coupled BEC’s in a symmetric double-well potential angular momentum. If the nonlinear interaction between the
were analyzed with the use of the &Jgroup[6,7] to show  atoms is not too largésee Ref[6]) (that is, the total number
the dynamical transition from self-trapping in one well to of atomsN is not too largg we can describe this system
delocalized oscillation through both potential wells due to
the nonlinear particle interaction. This model in the weak-
coupling region was further shown to demonstratphase 0.6
oscillations[8], while a semiclassical functional expression
for the three-dimensional Josephson coupling energy was de 04
rived [9]. This model, however, can be considered as a spe
cial case because of its simplicity and low dimensionality. %21
Any extension of this model significantly increases the non-

linearity, while higher-dimensional effects increase the com-72 *°f 322 1
plexity of the model structure. | =040 |
These more complex systems are of interest, as the riche 044
dynamics and model structure allows us to treat quanturmr 4| 048 -

states with nonzero currents, for instance. In the limit of a 052
large mode numben, Bose-Hubbard-type approaches are -os} .
useful when using a mean-field approximatid®]. How-

ever, systems with intermediate numbers of modesn?2 082 06 o1 o2 00 02 oa 06
<100, are complex, and models must exploit system sym- X,

metries in order to obtain solutions. The symmetries of these

groups are the SW() group symmetries. In this paper we  FIG. 1. Phase-space orbits of the semiclassical dynamics pro-
analyze a system of three coupled BEC's using the operatgected on they,-x, plane, for various values af The total number
algebra of SW3). This could be realized as three spatially of atomsN in the system was 810 r, =1/3 is the critical value

for localization. The transition from localized to delocalized dy-
namics is apparent. The subfigure in the right upper corner is a
schematic representation of three spatially distinct Bose-Einstein
condensates located at the minima of a potential with triangle sym-
metry. The tunneling coupling constant between all the wells is
equal and nonzero.
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using a minimum of three Bose modes for the quantum field, /o8 = | N L. N L
5 ?-I—XZ-FX]_ ?+X2—X1 +?+2X2=Y§+Z§,
gy, =2 [¢i(Ouj(xy)+c/(uxy)*1, (1) ) ) )
=1 2N . - N . 4 S g
2 _+X2_X1 __X2 +__X2_X1:Y2+Z y
: . 3 3 3
whereu;(x,y) are an appropriate set of orthonormal single- )
particle mode functions for this potential, and the annihila-
tion and creation operatorg and cjT satisfy the equal-time R AN
commutation relations 2 ?+>A<2+>A(1 5_5(2 +?_)“<2+§(1:Q§+2§_

S ch=s.
[i cj]=di. @) With the use of SIB) generators, we can represent Hamil-

As in the double-well casg6], we can choose approxi- tonian (3) in the form

mate single-particle mode functions which are localized A o Y . .
single-particle ground states for each of the three wWéils. H=Q(Z,+2Z,+2Z3)+ E(X§+ 3X3). (6)
We further assume that these three lowest localized states are

sufﬂqently well separated fro.m higher-energy states, an(i|—|ere we ignore constant terms involving the conserved total
that interactions between particles do not change this basic L a . .
property of the system configuration. Finally, we assume thagumPer of particlesN which do not change the dynamics of
the total number of particleN is conserved. These assump-t e system. . .

tions allow us to treat this model system in a three mode We now specifically consider the case V_Vm_’zo andy
approximation. Hence the many-body Hamiltonian describ=0- Such condensates are necessarily limited to a small

ing atomic BEC's[12] can be written in terms of the mode number of atom$14]. For attrgctive forces, t_he ground state
operators as is threefold degenerate, and in the occupation number repre-

sentation {m,n,N—(m+n))=|m);®|n),®|N—(m+n))s)
these states are

3 3
oo 8610 deyS detes . (3
2, 06r0 2 Garx GEes. @ le)=100N), [e)=[N.0.0), |e))=|ON,0). (7)

where o is the mode frequencyy(<0) is the two-particle  For all these states the ground-state enerdgois 2YN/3.
interaction strength, anf (<0) is the tunneling frequency.
The conditiony=<0 corresponds to atoms with attractive in- [ll. SEMICLASSICAL DYNAMICS

teractions. This is the Hamiltonian of our model system in

this paper. We treat the model of three coupled BEC'’s using the

semiclassical mean-field approximation. Ignoring correla-
tions between all operators, and taking expectation values,
IIl. SU(3) GROUP APPROACH converts the eight operator differential equations for the

This section shows a group theoretical treatment of a sysS.U(?’) ger_1erators in the quantu_m system _into e_ight differen-
tem with the Hamiltonian specified in E¢). In order to tial equations for real variables in the semiclassical system. It
describe this system with §8) generators \'Ne extend the is, however, very difficult to solve the full eight dimensional

Schwinger boson methdd 3] and we define the eight gen- equalt_ifc_)nds an;lytically.f Tr:mis Ieadfs u_shto cons_ider ‘E spelf_ific
erators of SB) {2, ¥, X} as simplified subspace of the set of eight equations by taking

the symmetric conditions;=0. The nature of this condition
will be explained in the subsection below, as to see the dy-

& o_ata _ata G iata _atn X . ) . .
X1=C€1C1—CaC2  Yii(CyCj—CjCy), namics clearly we first need to scale the semiclassical vari-
ables.
~ 1 The expectation values of generators are distinguished by

X2=§(CJ{01+ CiCr—2CiCs)  Z=ClCi+ClC, (4 their subscripts, while the expectation value of the total num-
ber operator id\. It is convenient to scale all the semiclas-
wherek=1,2,3 andj=(k+1)mod3+1. We note that the Sical averages biX. Thus we define
two operatorsX; commute with each othek; andX, rep- (%) ¥ A
resent particle distributions projected on tjneAand} axes, XJ:TJ’ yi:W]’ Zi:W]' (8)
respectively, in the right corner of Fig. 1, a¥d+Y,+Y;

_correstpo?dsl t? anglrj]l_a[] T;\omentumtln th'st.SySt.eTH Tge most, g equations of motion can be derived from the Heisenberg
important relation which the generators satisfy is the aSImIanuations of motion of the Hamiltonidikq. (6)], by factor-

invariant of Su3), 4N(N/3+ 1), WhereN is the total num- |ng all higher-order moments.

ber operatorN=3?_,c/c;. The operator algebra implies  The three degenerate ground states(or 0 can be as-
three further important identities: sociated with particular initial conditions in the semiclassical
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limit. To see this we first note that if we take matrix elements )'(2: -2Qy,
of both sides of the three operator identities in Eg), we '

find that yo=Q(3%,+2,— 2,) — 3YNzx,,

(& Y2+ 22|e;)= (1 3)2N. (©) 12
A z;=—2Qys,,

Using the commutation relations f¢z; ,Y;,X;} and the cor-

responding uncertainty relations with respect to the ground 'zzzgy2+ 3xYNXY5.

states, it is possible to show that the ground-state variances

that the relative fluctuations in these variables go to zero agonditions
N—o, as expected for a semiclassical limit. This indicates

that in the semiclassical limit we may approximate X2(0)=—2/3, (13

N - i(0)=z(0)=0.

(Z2)IN2~(Z;)?IN2=22, (10 yi(0)=2(0)
The semiclassical dynamics governed by the equations of

<Qi2>/N2~<Qi>2/N2:yi2_ (11) moti_on(12) is numerically s_h_own in Fig. 1._ _

Figure 1 shows a transition from localization to global

The resulting semiclassical equations will be analyzed?Scillation, and this dynamics change can be explained by

from two perspectives. We first show a dynamical transitionthe stable point analysis. This reduced system is integrable,

between self-trapping and delocalization when initial condi-2s these equations satisfy two constants of motion,

tions are given by Eq.7). This analysis determines the criti- 3 VN2

cal point for the dynamics transition. Second, we consider XN

the dependence of the stable points on the ratio of the cou- 2

pling between condensates to the particle-particle interaction 5 5 o

strength, and show bifurcations in the set of the stable points. 3x5+2(yy+25) +21=4/3, (15

_ N which correspond to energy and total number conservation,
Dynamics transition respectively. The latter constaiq. (15)] follows from two
Using these relations in Eq49), we can construct semi- Stricter constraints
classical correspondences for each of the ground states. This

i . 2 2
is shown below: §+x2 :Zf, (16)
ley) |€2) |es) 1\2 1

2| X+ =| +y5+z5== (17)
ya+72=0 ys+75=0 y3+75=0 2’6 2727
X1:0 X]_:l X_‘]_:_l . . . . i
Xp=—2/3 X,=1/3 Xy=1/3 which are derived from Eq5) with the symmetric condition

in the semiclassical limit.
The equations of motion with the chosen initial conditions
It is easy to verify that these curves are invariant under semimay be solved explicitly as a function &f, and depend on
classical dynamics witlll=0. As each of the ground states only one parameter, the ratio of the coupling constanio
is equivalent, up to a rotation in the phase space, we wilthe interaction strengtly:
now restrict the discussion t®;) (a condensate localized
initially in the third well) without loss of generality, and Q (=0) (18)
examine the dynamics whe+# 0. Ny '
Use of the initial statée;) naturally restricts the dynam-
ics due to system symmetries, allowing us to study an analhe solutions are
lytically solvable subsystem. The initial stafe;) and
Hamiltonian (6) are symmetric to permutations of wells 1 2,(1) = x,(t) + E
and 2, then the resulting dynamics also satisfy this symme- ! 2 3’
try. This ensures that; =0 for all time in the semiclassical
limit, which we previously referred to as the symmetric con- Xa(t)  3xp(1)? 11
dition. This symmetric condition specifies the subspace in Z(t)= = > T ar _§+§ ' (19)
which the reduced system dynamics lies, giving the addi-

tional conditions,y;=0, y,=—Y3, and z,=z;. The semi- yo(t)2=f[xx(t)],
classical dynamics is governed by the following four-
dimensional system: where
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r\2 312
f(xa(t)=— a(r)—(xz(t)+ §) E}
2r r 1
+? x2(t)+§ (2—; +B(r), (20
and where the integration constants are given by
4r  (r—2)?
a(r)=—?+ o (21
2 2
B(r)= 3]~ 5(2r—1)(r—2). (22

The solutions are oscillatory, and only exist fer2/3
<x,=1/3, and are strongly dependent on the roots of th
function f(x). f(x,) is fourth order in terms ok, and can
have up to four real roots. For increasinghe root structure

instructive to look at the fixed point structure of systét).
If all the derivatives of the equations of moti¢h?2) are zero,
then,

y>=0,
(23

3
_3X2_Zl+ Zz+ F22X2:0.

Taking the positive root forz; in constraint(16), z;=Xx,
+2/3, the second equation can be written

3 2
_4X2+22+ FZZXZ_ §:0 (24)

PHYSICAL REVIEW /43 013604
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FIG. 2. Ther dependence of the stable points. Each hyperbolic

gurve shows Eq(24) for differentr’s, while the ellipse represents

constraint(25). PointA is a stable point for any. Point B shows
when Eq.(24) collapses into the two lines, and poidis the unique

.. .point of tangential contact to the ellipse.
of f(x,) changes. To really understand these changes it @ g P

This occurs when the second factor in EG6) has a
double root atr =0.507425. Two new fixed points, a saddle
and a center, then appear, and move apartiagdecreased
away from 0.507425. The stable and unstable manifolds of
the saddle intersect, forming a lopsided figure-eight-like
separatrix with the new elliptic fixed point in the one lobe
and the elliptic fixed point a& in the other. Whem is 1 the
hyperbola reduces to the lings=2 andx,=—3, and the
solutions in &,,y,) space are symmetrical abouyt= — %. If
r is further decreased the separatrix approaches our initial
condition[Eq. (13)]. At r=3% the initial condition actually
lies on the separatrix. This occurs when the unstable fixed
point lies on the solution curdeeg. (19)], which amounts to
looking for a double root of (x,). If we let u=x,+(r/3),
then

So the fixed points are the crossing points of this equation

with the constraint

2

2| %o+ 5 +25= (25)

Ey

obtained by applyingy,=0 to constraint(17). Together,
these result in the following fourth-order ploynomial zg:

( 2
z,—

3 2 2
3/l 22t §(1—4r)22—2r(1—r)22+

I’2

3

18

— =0.
r2

(26)

Figure 2 shows curvekEgs. (24) and (25)] in the x,-z,
plane for various values af. The first factor of Eq.26)
gives us the pointA (x=0,z,=%). For largerr only one
branch of the hyperbolfEq. (24)] intersects the constraint,
and there are just two elliptic fixed points—onefaand one
in the third quadrant. The solutions with initial condition
X,=— % are far away from the elliptic fixed points, and per-
form large delocalised oscillations on the sphiEg. (17)].

A projection of one such solution is shown in Fig. 1 for

. r| 3u?\? 2u o 114B
u-z|=- a(r)—T +?( r—1)+B(r).
(27)
and we requird =0 andf’'=0. f'=0 gives
4r
u2=3[a(r)—\/4a(r)2—3B(r)], (28)

which when substituted intb=0 gives only one real solu-
tion atr, =1/3, x,=0. Now forr >3 the solutions lie within

the separatrix, and so ass decreased through the oscil-
lations suddenly reduce to half their former size, as can be
clearly seen in Fig. 1.

In the physical space of the potential, then, the condensate
remains localized at the bottom of the first welj= — 3, for
r=0. As we increase from zero,x,(t) begins to oscillate.

In thex,-y, plane, the point is replaced by small oscillations,
within the separatrix, which pass through= —2/3. This is
referred to as dynamical localization. Even though the cou-
pling between wells is present, the nonlinear interaction be-

=0.52. Asr is decreased, a second branch touches the conmween particles prevents the condensate from moving away

straint atC Fig. (2).

from its initially localized state. Eventually, for a critical

013604-4



QUANTUM DYNAMICS OF THREE COUPLED ATOMIC. .. PHYSICAL REVIEW A 63 013604

0.6 0.6

a) b) . . . .
0.4 0.4 FIG. 3. Time evolution of,(t) in the semi-
02 02 classical regime vs time belog@) and aboveb)
X, 00 X, 00 the critical valuer , =1/3 for Iocallzatlon_(a) cor-
o2 o2 responds to the below-threshold regime with
) ’ J =0.283, while (b) corresponds to the above-
04 04 threshold regime with =0.506. The number of
0.6 06 atoms is fixed aN=>50, and the timé is normal-
000 934 1868 2802 37.36 46.70 000 962 1924 28.86 8848 48.10 ized by Q.

t t

value ofr _2 the orbit in thex,-y, plane extends across both corresponding semiclassical case, both below and above the

half-planes for positive and negatixe values, and the con- critical valuer, . The oscillations of the quantum mean val-
densate is no longer localized. ues decay due to the intrinsic quantum fluctuations in the

In Fig. 1 we show the phase-space orbits of the semicladlumber of atoms in each individual well, while the total
sical dynamics projected onto the-y, plane for various particle number in the system remains fixed. The collapses
values of the parameter The initial conditions correspond and revivals of the oscillations in the quantum system arise
to a condensate localized in well 3. The transition from lo-ffom the discrete nature of the eigenvalue spectrum for finite
calized to delocalized motion is seen when the orbit in thé2{om number. Such phenomena were also observed in two
phase space extends into tg>0 half of the plane. In Fig. coupled condensat¢s]. , , ,

3 we plot x,(t) as a function of time for the condensate One of the interesting higher-dimensional features of this
initially localized in well 3, with the same initial conditions SYSteM is the existence of nonzero circular current states. For
as in Fig. 1 for two values of, one above and below the =0, the system has threefold-degenerate ground stes
critical valuer,, for localization. The transition from local- |€2)» and|es), and superpositions of those states create an-
ized to delocalized oscillations is apparent. other set of orthonormal ground states given as

1
IV. QUANTUM DYNAMICS lg1)= ﬁ(|e1>+ les)+es)),

In this section we treat the model of three coupled BEC'’s
model fully quantum mechanically, and numerically calcu-

late the time evolution of the particle distribution with the |g,) = i(e*iz’f’3|el)+|e2)+ei2”’3|e3)), (29)
initial condition |e,). For a fixed total atom numbe¥, a V3

suitable basis of the system Hilbert space is the number of

eigenstates [n,m,N—(n-+m)) which are simultaneous 1 o5 273

eigenstates of the generatdts and X, of the Abelian sub- 193)= ﬁ(e |e1) + e ey) +[es).

algebra of SW3). The unitary evolution operator is given by

U(t)=exd —iHt], whereH is specified by Eq(6). The uni-  These states are invariant undet/3 rotations due to system
tary evolution matrix is then computed, and the initial statesymmetries, as discussed in Rgif5]. Taking the statég,),
|#(0))=|ey) is then propagated forward in time. At each we examine the quantum dynamics of the angular momen-

time step we compute the averages ¥f) and(X,). These  tym ¥ =¥, +Y,+ Y. (The state|gs) gives the same dy-
averages show the particle distribution projected orythed  namics; however, since these states are antisymmetric to
x axes in Fig. 1, respectively. However, bec?use of the initiabach other, clockwise motion iy,) corresponds anticlock-
conditions for statd(0)), the average ofX;) does not wise motion in|gs).) Forr=0, the statdg,) is the ground
change and in fact remains zero. It is not considered furthestate, and the average angular momentum remains zero,
here. though for nonzera a nonzero average angular momentum
Figure 4 shows the evolution of a condensate initiallyappears, as seen in Fig. 5. This shows quantum dynamics of
localized in statee,), with the number of atoms fixed &  the average angular momentum normalized by the total num-
=50. For short times we see the same oscillations as in thieer N for two different values of. For smallr the nonzero

0.2 a) 0.2 b)
FIG. 4. The quantum dynamics ¢i,) vs
0.0 0.0 time below (a) and above(b) the critical value
<§2-N> 02 O(_Nﬁ 02 r, =1/3 for localization.(a) corresponds to the
| below-threshold regime with=0.283, while(b)
0.4 -0.4 corresponds to the above-threshold regime with
r=0.506. The number of atoms is fixed Bt
08 08 =50, and the time is normalized Hy.
0.00 1868 37.36 56.04 7472 9340 0.00 19.24 3848 5772 76.96 96.20

t t
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0.50 0.50

a) b)
025 025 FIG. 5. The quantum dynamics Qf(SA>/N vs
time with the initial state|g,), where Y=Y,
%) 0.00 VV,/‘J‘V"'\.V"J‘,M“wﬂ,"v‘v’\v"wﬂv\,A\, A (YTS) 0.00 +Y,+Y; is the angular momentum. The angular
W momentum for small =0.5 (a) fluctuates, while
-0.25 -0.25 nonzero circular motion appears (ib) for larger
r=1.3. The number of atoms is fixed Bt="50,
-0.50 -0.50 and the time is normalized .

0 20 40 60 0 20 40 60

angular momentum does not develop into any stable circulgplexity of this system and only some of the higher dimen-
motion [Fig. 5a)], while circular motion can be established sional effects. Our quantum treatment verified the dynamical
for larger [Fig. 5b)], and becomes increasingly stable for transition found in the semiclassical analysis. This model of
largerr. three coupled BEC's is the simplest model to have nonzero
circular current states, and we have shown that nonzero cir-

V. DISCUSSION AND CONCLUSION cular motion can appear given appropriate initial conditions.

The analysis of this paper focused on comparing the semi-

In this paper we have shown how the generators of33U  classical dynamics with the evolution of quantum mean val-
can be used to describe the quantum and semiclassical dyes. This restricted analysis naturally suggests a further ex-
namics of three symmetrically coupled atomic Bose-Einsteirymination of the dynamics of full quantum states. However,
condensates. By taking expectation values of the Heisenbefg order to examine full quantum states, it is necessary to use

equations of motion, and factoring all higher-order momentsmore powerful group theoretic tools, and this will be the
we can derive the semiclassical mean-field equations. Theypject of a future paper.

nonlinear terms arising from hard collisions lead to a dy-

namical bifurcation in the semiclassical dynamics as the tun-

nelllng strength is mcreasgd, reflecting a transition from lo- ACKNOWLEDGMENTS
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