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Abstract. When subject to an external time-periodic perturbation of frequency
f , a Josephson-coupled two-state Bose–Einstein condensate may respond with a
constant chemical potential difference �µ = kh f , where h is Planck’s constant
and k is an integer. We propose an experimental procedure to produce ac-driven
atomic Josephson devices that can be used to define a standard of chemical
potential. We investigate how to circumvent some of the specific problems derived
from the present lack of advanced atom circuit technology. We include the effect
of dissipation due to quasiparticles, which is essential to help the system relax
towards the exact Shapiro resonance, and set limits to the range of values which
the various physical quantities must have in order to favour the achievement
of a stable and accurate chemical potential difference between the macroscopic
condensates.
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1. Introduction

The realization of Bose–Einstein condensation in dilute atomic gases [1]–[3] has opened up
the possibility of investigating the macroscopic behaviour of coherent quantum matter in a new
class of physical system different from superconductors and helium liquids. Together with
vortex formation, the Josephson effect between weakly coupled Bose condensates is probably
the most characteristic signature of superfluidity. Initially predicted [4] and observed [5, 6]
in the context of superconductivity, the Josephson effect has also been observed in superfluid
3He [7, 8], a fact that underlies the fundamental nature of quantum behaviour at the macroscopic
scale. Atomic Bose–Einstein condensates (BECs) have it in common with superconductors and
superfluids that their most remarkable properties are derived from the existence of a macroscopic
wavefunction. Because of the profound analogies between these gauge-symmetry broken
systems, the possibility of observing the Josephson effect in trapped atomic gases was recognized
early [9]–[12]. Although some preliminary evidence for the existence of the Josephson effect in
atomic gases already existed [13, 14], it is fair to say that, compared with its superconducting and
superfluid counterparts, the exploration of the physics of weakly linked atomic condensates is still
in its infancy. Given the potential richness and the convenient tunability of BEC set-ups, it is clear
that decided progress must be made to investigate this whole new class of problems. At present
however, an important limitation is that the technology of atom circuits (also called ‘atomtronics’)
is still only moderately developed, although a bright future can already be foreseen [15, 16]. In
this sense, proposals that do not rely on the feasibility of controlled atom transport are particularly
welcome.

One of the most remarkable properties of superconducting devices is the existence of Shapiro
resonances. When two weakly coupled superconductors are subject to a voltage difference that
is the sum of a dc component V and a periodic signal v sin(2π f t), a continuous range of nonzero
dc currents are possible if

V = h

2e
k f, (1)

where 2e is the Cooper pair charge, h is Planck’s constant and k is an integer [6, 17]. A more
common set-up is one in which, due to the existence of a large impedance in series, an external
current source is applied. If the external current consists of a dc contribution and a weak ac
perturbation of frequency f , the Josephson link displays a dc V –I characteristic with voltage
plateaus at values satisfying the resonance condition (1). The height of the Shapiro steps linking
the voltage plateaus provides a method to measure the constant of nature 2e/h with such precision
and universality [18, 19] that, since 1972, the opposite view has been adopted whereby 2e/h is
assumed to be known and equation (1) is used to define a standard unit of voltage [17, 20, 21].

In this paper we address the question of whether it is possible to prepare a BEC Josephson
junction (BJJ) that satisfies the resonance condition (1) in a stable form. Another way of phrasing
the problem is whether macroscopic self-trapping of a large population imbalance [22, 23] may
be stabilized against dissipation by an oscillating perturbation. A condensate in a time-dependent
trap [24], and particularly a double condensate [25], has been shown to provide a convenient test
ground for quantum chaos. Here we face a different regime which predominantly involves regular
motion with dissipation. The challenge is to identify the conditions under which dissipation can
be exploited to let the system evolve towards one of the stable resonance islands.

At present we have a limited understanding of the dissipation mechanisms operating in a
BJJ, which render its macroscopic phase-number dynamics non-conservative. We know that
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94.3

contributions may arise at least from incoherent exchange of normal atoms [11], creation of
quasiparticles by the fluctuating condensate [23] or spontaneous atom losses [26, 27]. As long
as the net atom loss stays relatively small, its effect on the phase dynamics is similar in many
respects to that of incoherent particle exchange, both yielding ohmic dissipation under a wide
range of circumstances.

We wish to stress that the physics discussed in this paper applies both to double-well
condensates, displaying the external Josephson effect, and to optically coupled two-component
atomic condensates, which exhibit the internal Josephson effect [12]. A central concept in
the forthcoming discussion is the application of a time-dependent external potential. This
may be achieved by the application of suitably designed time-dependent magnetic fields or
dipole forces. Another essential ingredient, not considered in [22], is that the Josephson current
can counteract the dissipative current, thereby permitting the existence of stationary Shapiro
resonances. Moreover, by providing an effective friction to the phase dynamics, the dissipative
current ensures that the system gets arbitrarily close to the exact resonance at sufficiently long
times.

We want to remark that no fundamental reason prevents the possibility of exploring this
novel approach to Shapiro resonances in the context of superconductors. There, capacitive
couplings might be used to control or measure voltage differences.

Section 2 is devoted to a quantitative formulation of the problem. We know that each
phase-locked solution generates an attractive basin in phase space. We raise the question of how
dissipation can be exploited to let the system land successfully on that region, never to escape
from it except for quantum tunnelling decay. The solution is offered in section 3, where we
investigate the dissipative dynamics in phase space. Later, in section 4, we provide an estimate
of the probability that a system prepared with a large chemical potential difference evolves
in such a way that, in the process of decaying, it is trapped in a classically stable well. The
stochasticity comes from the intrinsically random nature of the choice of phase made by the
double-condensate system shortly after the connection [23]. Section 5 is devoted to the effect of
quantum fluctuations, which may cause macroscopic tunnelling decay. The combined analysis
of sections 2–5 yields a set of constraints that must be fulfilled to achieve an optimal realization
of the predicted Shapiro resonances. A concluding discussion is provided in section 6.

2. Formulation of the problem

We consider N Bose-condensed atoms in a double-well trapping potential V (x, ξ) that depends
on a harmonically time-dependent control parameter ξ(t) = ξ0 cos(�t). In a situation sufficiently
close to equilibrium, a split condensate is formed which can be described within a two-mode
approximation. Thus, we use for the field operator the ansatz ψ(x) = ϕA(x)a + ϕB(x)b, where
the orbital functionsϕA,B are normalized to unity. This yields the two-mode Hamiltonian [10, 12]

H = − h̄ωR

2
(a†b + b†a) + E A(NA, ξ) + EB(NB, ξ). (2)

Here, ωR denotes the effective Rabi frequency of the two-mode problem, which is proportional
to the Josephson coupling energy [12]. It is important to note that, in the case of optically
coupled two-component BECs (internal Josephson effect), ωR does not generally coincide with
the Rabi frequency �R governing atomic transitions. Rather, one has ωR = �RsAB , where
sAB ≡ ∫

dx ϕ∗
AϕB [28]. It is only when the trapping configuration and the interactions are such

New Journal of Physics 5 (2003) 94.1–94.14 (http://www.njp.org/)

brand4.eps
http://www.njp.org/


94.4

that ϕA(x) = ϕB(x), that the two frequencies become identical. The Gross–Pitaevskii energy of
fragment i :

Ei(Ni , ξ) = Ni

∫
dx ϕ∗

i (x)
(
− h̄2

2m
� + V (x, ξ) +

gNi

2
|ϕi(x)|2

)
ϕi(x), (3)

i = A, B, has inherited a time dependence from the control parameter ξ(t).
For an analysis of the system in its classical limit, we replace in the Heisenberg equations of

motion the operators a, b by
√

NAe−iφA ,
√

NBe−iφB and expand the Gross–Pitaevskii energies for
small ξ and small number imbalance compared with the equilibrium values N 0

A and N 0
B (usually

taken to be N/2). For the variables φ ≡ (φA − φB) and z ≡ (NA − NB)/N ≡ 2n/N , with time
measured in units of 1/ωR, this yields

φ̇ = z√
1 − z2

cos φ +	z + ε cos(�t) = �µ/h̄, (4)

ż = −
√

1 − z2 sin φ − γ φ̇, (5)

with the scaled driving amplitude

ε = ξ0

h̄ωR

[∂2 E A(NA, ξ)

∂ξ ∂NA
− ∂2 EB(NB, ξ)

∂ξ ∂NB

]
NA=NB=N/2, ξ=0

(6)

and the effective interaction constant

	 = N

2h̄ωR

[∂2 E A(NA, 0)

∂N 2
A

+
∂2 EB(NB, 0)

∂N 2
B

]
NA=NB=N/2

. (7)

Equations (4) and (5) can also be obtained from the classical non-rigid pendulum
Hamiltonian [10, 12] (hereafter energies are expressed in units of h̄ωR):

H(z, φ, λ) = −
√

1 − z2 cosφ + 1
2	z2 + εz cos(�t), (8)

where (z, φ) are canonically conjugate coordinates. For a simplification, we have assumed
a symmetric situation with E A(N/2, ξ) = EB(N/2,−ξ)—the generalization is, of course,
straightforward and results in an additional phase drift. The last term in the equation of motion (5)
has been introduced phenomenologically to describe a dissipative current, i.e. an incoherent
exchange of atoms. For high temperatures, kB T � �µ, this current is ohmic, i.e. proportional to
the chemical potential difference, ṅ = −G�µ [11]. Following the reasoning by Josephson [4],
the chemical potential difference is given by the time derivative of the relative phase, φ̇ = �µ/h̄,
and thus we obtain the dissipative term in equation (5) with3 γ = 2h̄G/N . We will also analyse
the more general case in which ṅ may not be a linear function of φ̇, a situation which is likely to
appear at low temperatures.

In order to put the central discussion into the proper context, it is convenient to review the
dynamics of the relative phase after two independently prepared condensates are connected [23].
Before the connection, the phase is completely undefined, which means that the Fock state of fixed
particle number is in a coherent superposition of different phase states. Upon connection, various
mechanisms involving quasiparticle dynamics intervene to destroy the coherence between the
different phase states. As a result, the reduced density matrix of the macroscopic phase-number

3 At first sight there seems to be an ambiguity as to whether dissipation should come as −γ φ̇ or rather −γ ′z. That
the former is the correct approach can also be inferred from a careful study of quantum dissipation models [29]. In
the present context, however, the choice is without practical consequences.
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Figure 1. Phase space portrait of the undriven (ε = 0 (a)) and the driven (ε = 100
(b)) undamped momentum-shortened pendulum Hamiltonian (8) at stroboscopic
times t mod 2πk/� = π/2. The interaction is	 = 104 and the driving frequency
� = 1000.

system becomes quasi-diagonal in the phase representation, which is to say that the phase is
effectively measured among a menu of values uniformly distributed between 0 and 2π . After
this quick definition of the phase, a phase-number Gaussian wavepacket forms that evolves
semiclassically in the parabolic tight-binding lattice formed by the different number eigenstates.
Due to the interaction term, the system experiences a tilted lattice and, thus, undergoes Bloch
oscillations, which may be viewed as the ac Josephson response to an approximately constant�µ
created by the number imbalance with the possible concurrence of other factors. Its trajectory
follows one of the running solutions in the phase space diagram shown in figure 1(a). Thus, the
system oscillates around a nonzero number average z̄ displaying the so-called macroscopic
quantum self-trapping (MQST) [22]. However, these oscillations are not stable, since the
fluctuating condensate atom number in each well couples to the many-quasiparticle field and
experiences dissipation. Thus the energy stored in the macroscopic degree of freedom decreases
and z̄ decays slowly towards its equilibrium value [23].

In the presence of an ac driving, the situation may change qualitatively, since classically
stable resonance islands form in phase space for values of z, φ such that

	z̄ = k�, dz̄/dt = 0, (9)

where k is an integer (see figure 1(b)). Here, the bars indicate the time average over fast Bloch
or external driving oscillations, of frequencies k� and �, respectively, and the time derivative
is meant over a longer timescale. In general, the system displays running solutions weakly
oscillating around an average value z̄ which slowly decays because of dissipation. Such a
decaying trajectory may or may not be trapped in one of the attractive basins around the Shapiro
resonances.

For a provisional answer to the central question formulated above, we integrate numerically
the equations of motion (4) and (5) in the Josephson regime (	 � 1; we take 	 = 104),
where the BJJ displays, in the absence of dissipation, stable running MQST solutions. When
starting with an initial imbalance z(0) that lies above a resonance island, we find two qualitatively
different types of solutions: the first type (the lower curve in figure 2) is what one would typically
expect, namely that, owing to the ohmic current, the imbalance decays until it leaves the MQST

New Journal of Physics 5 (2003) 94.1–94.14 (http://www.njp.org/)

brand4.eps
http://www.njp.org/


94.6

Figure 2. Population imbalance z(t) for interaction 	 = 104, damping γ =
3 × 10−5, driving amplitude ε = 100 and frequency � = 1000 for two different
initial values of the phase. The saturation time-averaged value z̄ = 0.1 of the
upper solution corresponds to the chemical potential difference h̄� (k = 1). The
inset is a blow-up that resolves the fast underlying Bloch (or MQST) oscillations.

regime and ultimately exhibits damped plasma oscillations. Except for the small kink displayed
when crossing the resonance zone, the dynamics is qualitatively the same as in the undriven
case. However, for the same parameters but different initial phase, there exist also solutions
with an intriguing behaviour (see the upper curve in figure 2): there, the system gets trapped in
the resonance island and the transient decay comes to a standstill instead of continuing towards
the true equilibrium solution (z = 0). At long times, the number imbalance z oscillates with
amplitude ε around a non-zero value z1 = �/	. We will show that then the average chemical
potential difference is precisely a multiple of the driving frequency. More specifically, we find
(in scaled units)

�µ = k� + ε cos(�t). (10)

We wish to remark that the BEC set-up considered here differs substantially from its
superconducting analogues in that there the stabilization of a voltage difference at the Shapiro
resonance is achieved with the concourse of an externally imposed current, i.e. in an experiment
a current source is needed. Here by contrast, the stabilization of a chemical potential difference
cannot rely on such external current sources which for BECs are not (yet) available. As a
drawback, the present type of ‘voltage’ standard can be obtained only at the price that a single
run of the experiment does not warrant a stable solution. In the following, we provide a detailed
analysis of this type of Shapiro resonance, estimating their parameter dependence and, eventually,
the probability that they can be spontaneously realized.

3. Realization of phase-locked solutions

Our central interest lies in the existence and the stability of so-called phase-locked solutions,
i.e. solutions φ(t) that have only small fluctuations around a long-time average φ̄ ≈ k�t . Then,
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since the main chemical potential difference between the two condensate fragments comes from
the interaction energy, the average number imbalance z̄ settles down at a value zk ≡ k�/	. This
motivates the ansatz

φ = k�t +
ε

�
sin(�t) + δφ, (11)

z = k�

	
+ α cos(k�t) + δz, (12)

where α denotes the yet unknown amplitude of the fast residual Bloch oscillations that can be
appreciated in the inset of figure 2. We would like to choose α such that the resulting δφ and δz
display only slow, decaying oscillations around a stationary solution δφ = constant, δz = 0 to
which they tend at long times. In other words, α should be such that, in the absence of δz and
with δφ replaced by a constant, equations (11) and (12) correctly capture the asymptotic system
dynamics.

The equations of motion for δφ and δz are obtained by inserting (11) and (12) into the
original equations (4) and (5). The resulting system of equations involves rapidly oscillating
coefficients of period 2π/�. It can be shown that, if α = 1/k� and� � 1, then δφ and δz vary
more slowly than those coefficients (a result which we have confirmed by numerical studies),
so that the different timescales can be separated consistently and all time-dependent coefficients
can be replaced by their time averages. On the other hand, we are interested in the case of two
condensate fragments which are comparable in size (|z| � 1). Thus we neglect within this
analytic discussion the momentum shortening and replace the square root in the Hamiltonian (8)
by unity [12]. Finally we obtain the equations of motion

d

dt
δφ = 	δz, (13)

d

dt
δz = −Jk(ε/�) sin(δφ)− γ k�− γ	 δz, (14)

which describe a dissipative particle in the static tilted washboard potential sketched in figure 3.
They can be obtained from the Hamiltonian

H(δφ, δz) = 1
2	δz2 − Jk(ε/�) cos(δφ) + γ k�δφ (15)

together with the dissipative force Fdiss = −γ	 δz. The new canonical coordinates δz and δφ
represent momentum and position, respectively, and Jk denotes the kth Bessel function of the first
kind. We emphasize two differences between these equations and the undriven rigid pendulum
Hamiltonian: first, there is a tilt γ k�which originates from a constant dissipative current caused
by a finite number imbalance. Despite its physical origin, it appears formally as a conservative
force. Second, the Josephson coupling energy for the phase shift δφ is renormalized by a
factor Jk(ε/�) which, for ε � �, renders it much smaller than the original Josephson energy.
Correspondingly, the plasma frequency is renormalized by a factor4

√
Jk(ε/�). Once δφ is

trapped within one specific well, it exhibits damped plasma oscillations with the renormalized
frequency until it ultimately comes to rest. In this stationary solution one has δφ̇ = δ ż = 0,
which is possible thanks to the cancellation of the first two terms in the rhs of equation (14).
Therefore, one finds from equation (11) and the Josephson relation φ̇ = �µ/h̄ the chemical
potential difference (10).

4 If we had relaxed the assumption |z| � 1, then Jk(ε/�) would have appeared multiplied by a factor
√

1 − z̄2.
However, one must remember that, if |z| were to become comparable to unity, then the two-mode approximation
might have to be revised.
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Figure 3. Sketch of the effective washboard potential (15) as a function of the
phase difference δφ for γ k� < Jk(ε/�).

Having mapped the long-time dynamics of the originally time-dependent situation to
an equivalent static problem, we are now able to derive the conditions under which phase-
locked solutions exist. This results in the restrictions of the parameters summarized in table 1.
Obviously, the effective washboard potential in the Hamiltonian (15) possesses minima only for
γ k� < Jk(ε/�) which amounts for small driving amplitudes ε � � to γ k� � (ε/2�)k . This
is most easily satisfied for k = 1, where the condition for the existence of wells is ε > 2γ�2.
Since, on the other hand, the driving should be weak, ε � �, both conditions on the driving
amplitude ε can be fulfilled simultaneously only for sufficiently small dissipation, γ � 1/�.

Also the interaction strength	 obeys restrictions which are obtained in the following way:
physically, the idea behind our scheme is to counterbalance a dissipative current with the help
of ac driving, thereby stabilizing a MQST solution against friction. The condition for operating
clearly in a regime where MQST dominates is 2/

√
	 � z̄ [22, 23]. On the other hand, the

two condensate fragments should not differ too much in size, thus, z̄ � 1. Since we aim
at stabilizing the imbalance z̄ = �/	, fulfilling both conditions requires a sufficiently large
interaction strength, typically 	 � 103.

A further physical reason for operating the Bose–Josephson junction in the (interaction-
dominated) Josephson limit stems from an important property of phase-locked solutions, namely
that generally the centre of an attractive basin is not truly at rest but follows the trajectory of a
particle in the absence of driving and dissipation [30]. In the Josephson regime, such a behaviour
corresponds to the MQST solutions exhibiting Bloch oscillations with amplitude α = 1/	z̄
around an average value z̄, as can be appreciated in equation (12). At resonance, their relative
amplitude becomes α/z̄ = 1/	z̄2 = 	/�2. Ideally, for the realization of stable phase-locked
solutions, this amplitude should be small, as is the case in the Josephson regime (	 � 1). On
the contrary, in the (non-interacting) Rabi regime (	 < 1) [12], the undamped and undriven
pendulum exhibits large number (Rabi) oscillations around z = 0, i.e. there is no MQST. This
results in large oscillations of any attractive basin which render BJJs in the Rabi regime useless
for the present purposes.

We conclude this section with a comparison between Shapiro resonances and another well-
known, apparently similar dynamical phenomenon. It has been shown [31] that for a high-
frequency driving with � � �µ/h̄, the Josephson energy acquires a factor J0(ε/�) and that,
consequently, the coherent exchange of atoms is brought to a standstill if ε/� is chosen as
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Table 1. Conditions for the existence of phase-locked solutions which are suitable
for a chemical potential standard with �µ = h̄� (i.e. z̄ = �/	 and k = 1).

Restriction Physical significance

ε � � Chemical potential difference much larger than its modulation
ε > 2γ�2 Existence of stable wells in the washboard potential
	 � �2 Operation within MQST regime, Bloch oscillations small
	 � � Number imbalance small

a zero of the Bessel function J0. Such an effect amounts to an interacting version of the
so-called coherent destruction of tunnelling (CDT) predicted for single particles in bistable
potentials [32]. We emphasize that the present phenomenon is different in two respects: first,
CDT takes place at zeros of Bessel functions and, thus, requires large driving amplitudes, while
here, the driving amplitude is much lower. Second, CDT fades out under the influence of
dissipation, while in our case, moderate dissipation is essential for the convergence towards a
phase-locked solution.

4. Locking probability

After investigating which is the parameter regime that permits stable phase-locked solutions, we
turn to a remaining intriguing question: what is the probability that such a solution is hit by
starting with a random initial phase? To give a crude estimate for the answer, we employ again
the analogy of the dissipative motion in a tilted washboard potential.

Let us assume that we start out of resonance with an imbalance z1 < z < z2, with
zk = k�/	, that corresponds to δz > 0, i.e. to a particle moving uphill in the tilted washboard
of figure 3. Having only finite energy, the particle will bounce in one specific well. At the entry
point, the energy will be in the range (Eb, Eb + 2πγ k�), where Eb is the potential energy at the
top of the lower barrier. While moving within the well during one cycle, the particle dissipates
the energy

Ediss ≈ −
∫

Fdiss dφ ≈ 2πγ	
√

2ε/	�. (16)

Here, we have estimated the maximum value of the dissipative force Fdiss = −γ	 δz
(cf equation (14)) from the maximum kinetic energy 1

2	δz2 ≈ 2Jk(ε/�) ≈ ε/� for k = 1 and
γ � ε/�2. Assuming for the particle’s phase space trajectory the shape of an ellipse yields the
rhs of equation (16). If the initial energy minus the dissipated energy lies below the barrier, the
particle will end up at rest in the well. By assuming that the random initial phases translate into
equally distributed initial energies, we find that this happens with probability

w = Ediss

2πγ�
≈

√
2ε	

�3
, (17)

if Ediss < 2πγ�, and w = 1 otherwise. Ideally, one would like to have w = 1 to ensure phase
locking in all runs. However, it is easy to show from the constraints in table 1 that this would
require � � ε which, for reasons already indicated, is not of physical interest. Thus one must
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Figure 4. Estimate (17) for the locking probability compared to the fraction
of phase-locked solutions (symbols) obtained from numerical integrations of
equations (4) and (5) with random initial phase. The driving amplitude is
ε = 0.1� (full curve, filled symbols) and ε = 0.01� (broken curve, open
symbols). The interaction is 	 = �/z1, where z1 = 0.1, and the dissipation
γ = 0.1 ε/�2 (circles) and γ = 0.05 ε/�2 (triangles). Each data point is
obtained from 1000 simulation runs.

content oneself with identifying a range of parameters that make the probability of landing in a
resonance non-negligible.

One might conceive situations where the control of the relative particle number before the
connection (as well as of the interaction parameters) were so good that the system could be
forced to be within the attractive basin from the start. While designing z(0) to be very close
to the resonance value z̄ = �/	 would surely increase the probabilities of relaxing towards
the Shapiro resonance, we wish to emphasize here that success can never be fully guaranteed
because of the intrinsically random nature of the initial phase φ(0), as can be clearly inferred
from inspection of figure 1(b).

To confirm the analytical estimate (17) for the locking probability, we have integrated
numerically the equations of motion (4) and (5) starting with a number imbalance z(0)= 1.5�/	
and a random initial phaseφ(0). The parameters have always been chosen such that ε � � � 	

and γ � 1/� according to the requirements derived in the last section. Figure 4 compares the
analytical estimate (17) to the fraction of numerical runs that converge to a phase-locked solution.
The numerical and analytical results agree well in the regime� � 30. For� = 100, the locking
probability typically assumes values of the order of 10%. We attribute the worse agreement
between theory and simulation for � � 30 to the fact that, in such a range, � becomes so small
that the requirement	 � �2 (see table 1) can no longer be satisfied if, as is the case in figure 4,
	 is constrained to be �/z1 with z1 = 0.1. An extreme case of disagreement is found for the
lowest frequency considered when ε = 0.1 �.

The ohmic dissipation which we have assumed in our previous analysis is only justified
for temperatures well above the chemical potential difference [11]. For a typical condensate,
however, the chemical potential is of the same order as the temperature and thus the dissipative
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current may not follow a linear law. Therefore, as a last item within the classical analysis, we
consider the more general dissipative current ż|diss = −g(z), which might depend on various
parameters like, for example, the interaction strength and the temperature. Using the ansatz (12),
we linearize g(z) ≈ −g(zk) − g′(zk) δz and repeat the analysis from above. We find for k = 1
again the locking probability (17) but with an additional factor z1g′(z1)/g(z1) = z1[ln g(z1)]′,
z1 = �/	. On the other hand, the slope of the washboard, i.e. the average dissipative current,
acquires a factor g(z1). For very low temperatures kB T � �µ, for instance, the quasiparticle-
excitation decay mechanism discussed in [23] yields g(z) ∝ z2, and therefore the locking
probability is enhanced by a factor of 2, but is still of the same order.

5. Quantum fluctuations

The classical treatment of the Bose–Josephson junction given above, has its limitations due to
quantum fluctuations of the number n and the phaseφ. They come from the commutation relation
[n, eiφ] = eiφ which amounts for small phase uncertainty to

[z, φ] = −2i/N . (18)

This leads basically to two constraints for the washboard potential: first, the potential wells of
a washboard potential are quantum mechanically metastable since a particle will tunnel out at a
rate [33]

κ = ω0e−2πE0/h̄ω0. (19)

To justify the classical treatment from above, 1/κ must be larger than all the other timescales
of the problem. A second, related point is that the phase-space region corresponding to the
metastable well must support sufficiently many quantum states to treat both the number and the
phase as continuous classical variables. For a well of depth E0 with curvature ω2

0, the number of
quantum states can be estimated as m = E0/h̄ω0. From both arguments, we conclude that the
ratio of the potential depth and the energy quantum of a small oscillation at the bottom of the
well determines whether we operate in the classical limit E0 � h̄ω0.

To determine the connection between E0, h̄ω0 and the non-standard commutation relation
(18) and our scaled parameters for k = 1, we have to accomplish the replacements

E0 → ε

�
, h̄ → 2

N
, ω2

0 → ε	

2�
. (20)

This results in

E0

h̄ω0
= N

√
ε

2�	
, (21)

which is essentially the ratio between the Josephson coupling energy and the renormalized
plasma frequency in the metastable well. For typical parameters used above (ε = 0.01�,	 =
10�,� � 100), a condensate consisting of N � 105 atoms supports m ≈ 100 states and
yields an escape rate that is practically zero. Therefore, we do not expect any relevant quantum
correction.
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6. Conclusions

We have investigated a realistic set-up that may provide the basis for a standard of chemical
potential difference between weakly connected atomic BECs. Due to the still rudimentary
development of atom circuit technology, we have focused on schemes that do not require
coupling to an external circuit, thus staying away from straightforward analogues of well-tested
superconducting devices. In particular, we have investigated the possibility of connecting two
separate condensates in the presence of ac driving in such a way that, as the system relaxes towards
equilibrium, it has an appreciable probability of being trapped in a Shapiro resonance for which
�µ is exactly an integer multiple of h f , with f the driving frequency. If the resolution of the
imaging process is good enough, a frequency � = 2π f can be found satisfying simultaneously

	�z < � � 	. (22)

While the second inequality ensures a small number imbalance (see table 1), the first one
expresses the experimental ability to resolve two different Shapiro plateaus, �z < zk+1 − zk =
�/	. Therefore, under any reasonable visibility conditions (�z � 1), there exists a range of
frequencies for which it is possible to identify the integer ratio �µ/h f , i.e. for which we can
know the precise Shapiro step where the double condensate has become locked. In particular,
we can tell whether the phase-locking has failed and the experimental run needs to be repeated.
Therefore, we see that the main requirement of a precision measurement is satisfied, namely
that, with the help of an accurately controlled frequency, a poor measurement of a physical
quantity (the atom number imbalance) enables a fine measurement of another physical quantity
(the chemical potential difference).

Instead of being a hindrance, dissipation provides here a crucial help, since it allows the
system to spontaneously relax towards a stable resonance where the chemical potential difference
is guaranteed to have a precise value. We have identified a number of parameter constraints that
must be satisfied in order to have an optimum control of the Shapiro resonance. These include
the need to have a weak driving signal, the operation within the collective Josephson regime,
the need to keep the average number imbalance small, the requirement of even smaller Bloch
oscillations, the necessity to optimize the probability of landing in the desired Shapiro step out
of a random initial phase and the robustness against escape by quantum tunnelling from the
metastable state.

Fortunately, this set of constraints does still allow for a window of realistic parameters
within which accurate chemical potential differences could be realized. Let us, for instance,
consider N = 106 23Na atoms in a split trap with frequency ωho = 2π × 100 Hz. The bulk
properties of the condensate are readily estimated within the Thomas–Fermi approximation to
yield the chemical potentialµ ≈ 70h̄ωho and the mean field energy E A(N ) ≈ h̄N 7/5 × 0.01 s−1.
Estimating the Josephson coupling energy, respectively the Rabi frequency, is more tedious and
relies sensitively on the assumptions made for the shape and size of the barrier. We assume
here a Gaussian shape of width 6 µm and height of 1.05 µm such that, for a driving amplitude
ε = 0.01�, the top of the barrier lies always above the instantaneous chemical potential of both
wells. Along the lines of [11, 12], we obtain the effective action S0 = 1.7 h̄ and, thus, the Rabi
frequencyωR ≈ 2π×0.05 Hz. This finally yields the effective interaction	 ≈ 104 that we have
assumed above. The (bare) Josephson plasma frequency is approximatelyωJP = 2π × 5 Hz; for
the resonant solution in figure 2, phase locking sets in after 5 s.

One might wonder what may be the use of a ‘voltage’ standard in the absence of an atom
circuit. First of all, no fundamental reason prevents the use of the present scheme in future atom
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circuits. Then, this concept will have to be tested against ideas more directly borrowed from
the technology of superconductors. Second, already within the currently limited possibilities of
condensate transport, the realization of a Shapiro resonance may provide a convenient playground
for the investigation of novel BEC scenarios. For instance, it seems possible to extend the
experimental work of [14] to include an external ac driving that locks a pair of wells into
resonance. The static behaviour of that pair of condensates should contrast with the dynamic
behaviour of atoms in neighbouring wells. That would provide a most direct test of the Josephson
effect in atomic condensates. Third, a fine control of the chemical potential may open up the
possibility of detailed checks of our current understanding of the novel many-body problem
posed by trapped quantum gases. Quite likely, the effect of interactions will be easily isolated
from that of gravity or other well-controlled external fields. Finally, there is the hope that the
present work may provide the basis for more efficient or practical concepts that will make the
emergent ‘atomtronics’ a precise technology.
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