59 research outputs found
Ground state properties and bubble structure of superheavy nuclei
We calculate the ground state properties of recently synthesized superheavy
nuclei starting from =105-120. The nonrelativistic and relativistic mean
field formalisms is used to evaluate the binding energy, charge radius,
quadrupole deformation parameter and the density distribution of nucleons. We
analyzed the stability of the nuclei based on the binding energy and neutron to
proton ratio. We also studied the bubble structure of the nucleus which reveals
about the special features of the superheavy nucleus
Rotating biological contactors : a review on main factors affecting performance
Rotating biological contactors (RBCs)
constitute a very unique and superior alternative
for biodegradable matter and nitrogen removal on
account of their feasibility, simplicity of design and
operation, short start-up, low land area requirement,
low energy consumption, low operating and maintenance
cost and treatment efficiency. The present
review of RBCs focus on parameters that affect
performance like rotational speed, organic and
hydraulic loading rates, retention time, biofilm support
media, staging, temperature, influent wastewater
characteristics, biofilm characteristics, dissolved oxygen
levels, effluent and solids recirculation, stepfeeding
and medium submergence. Some RBCs
scale-up and design considerations, operational problems
and comparison with other wastewater treatment
systems are also reported.Fundação para a CiĂȘncia e a Tecnologia (FCT
Thermo-Mechanical Treatment Effects on Stress Relaxation and Hydrogen Embrittlement of Cold-Drawn Eutectoid Steels
The effects of the temperature and stretching levels used in the stress-relieving treatment of cold-drawn eutectoid steel wires are evaluated with the aim of improving the stress relaxation behavior and the resistance to hydrogen embrittlement. Five industrial treatments are studied, combining three temperatures (330, 400, and 460 °C) and three stretching levels (38, 50 and 64% of the rupture load). The change of the residual stress produced by the treatments is taken into consideration to account for the results. Surface residual stresses allow us to explain the time to failure in standard hydrogen embrittlement test
Fog computing security: a review of current applications and security solutions
Fog computing is a new paradigm that extends the Cloud platform model by providing computing resources on the edges of a network. It can be described as a cloud-like platform having similar data, computation, storage and application services, but is fundamentally different in that it is decentralized. In addition, Fog systems are capable of processing large amounts of data locally, operate on-premise, are fully portable, and can be installed on heterogeneous hardware. These features make the Fog platform highly suitable for time and location-sensitive applications. For example, Internet of Things (IoT) devices are required to quickly process a large amount of data. This wide range of functionality driven applications intensifies many security issues regarding data, virtualization, segregation, network, malware and monitoring. This paper surveys existing literature on Fog computing applications to identify common security gaps. Similar technologies like Edge computing, Cloudlets and Micro-data centres have also been included to provide a holistic review process. The majority of Fog applications are motivated by the desire for functionality and end-user requirements, while the security aspects are often ignored or considered as an afterthought. This paper also determines the impact of those security issues and possible solutions, providing future security-relevant directions to those responsible for designing, developing, and maintaining Fog systems
The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 < z < 1.0
We analyse the anisotropic clustering of the Sloan Digital Sky Survey-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) Luminous Red Galaxy Data Release 14 (DR14) sample combined with Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample of galaxies in the redshift range 0.6 < z < 1.0, which consists of 80â118 galaxies from eBOSS and 46â439 galaxies from the BOSS-CMASS sample. The eBOSS-CMASS Luminous Red Galaxy sample has a sky coverage of 1844âdeg2, with an effective volume of 0.9âGpc3. The analysis was made in configuration space using a Legendre multipole expansion. The Redshift Space Distortion signal is modelled as a combination of the Convolution Lagrangian Perturbation Model and the Gaussian Streaming Model. We constrain the logarithmic growth of structure times the amplitude of dark matter density fluctuations, f(zeff)Ï8(zeff) = 0.454 ± 0.134, and the Alcock-Paczynski dilation scales which constraints the angular diameter distance DA(zeff)=1466.5±133.2(rs/rfids) and H(zeff)=105.8±15.7(rfids/rs)kmsâ1Mpcâ1â , where rs is the sound horizon at the end of the baryon drag epoch and rfids is its value in the fiducial cosmology at an effective redshift zeff = 0.72. These results are in full agreement with the current Î-Cold Dark Matter (Î-CDM) cosmological model inferred from Planck measurements. This study is the first eBOSS LRG full-shape analysis i.e. including Redshift Space Distortions simultaneously with the Alcock-Paczynski effect and the Baryon Acoustic Oscillation scale
- âŠ