3,149 research outputs found

    Weakly Enforced Boundary Conditions for the NURBS-Based Finite Cell Method

    Get PDF
    In this paper, we present a variationally consistent formulation for the weak enforcement of essential boundary conditions as an extension to the finite cell method, a fictitious domain method of higher order. The absence of boundary fitted elements in fictitious domain or immersed boundary methods significantly restricts a strong enforcement of essential boundary conditions to models where the boundary of the solution domain coincides with the embedding analysis domain. Penalty methods and Lagrange multiplier methods are adequate means to overcome this limitation but often suffer from various drawbacks with severe consequences for a stable and accurate solution of the governing system of equations. In this contribution, we follow the idea of NITSCHE [29] who developed a stable scheme for the solution of the Laplace problem taking weak boundary conditions into account. An extension to problems from linear elasticity shows an appropriate behavior with regard to numerical stability, accuracy and an adequate convergence behavior. NURBS are chosen as a high-order approximation basis to benefit from their smoothness and flexibility in the process of uniform model refinement

    Engineering of Neutral Excitons and Exciton Complexes in Transition Metal Dichalcogenide Monolayers through External Dielectric Screening

    Full text link
    In order to fully exploit the potential of transition metal dichalcogenide monolayers (TMD-MLs), the well-controlled creation of atomically sharp lateral heterojunctions within these materials is highly desirable. A promising approach to create such heterojunctions is the local modulation of the electronic structure of an intrinsic TMD-ML via dielectric screening induced by its surrounding materials. For the realization of this non-invasive approach, an in-depth understanding of such dielectric effects is required. We report on the modulations of excitonic transitions in TMD-MLs through the effect of dielectric environments including low-k and high-k dielectric materials. We present absolute tuning ranges as large as 37 meV for the optical band gaps of WSe 2 and MoSe 2 MLs and relative tuning ranges on the order of 30% for the binding energies of neutral excitons in WSe 2 MLs. The findings suggest the possibility to reduce the electronic band gap of WSe 2 MLs by 120 meV, paving the way towards dielectrically defined lateral heterojunctions.Comment: 11 pages + 6 pages supporting informatio

    Consequences of critical interchain couplings and anisotropy on a Haldane chain

    Get PDF
    Effects of interchain couplings and anisotropy on a Haldane chain have been investigated by single crystal inelastic neutron scattering and density functional theory (DFT) calculations on the model compound SrNi2_2V2_2O8_8. Significant effects on low energy excitation spectra are found where the Haldane gap (Δ00.41J\Delta_0 \approx 0.41J; where JJ is the intrachain exchange interaction) is replaced by three energy minima at different antiferromagnetic zone centers due to the complex interchain couplings. Further, the triplet states are split into two branches by single-ion anisotropy. Quantitative information on the intrachain and interchain interactions as well as on the single-ion anisotropy are obtained from the analyses of the neutron scattering spectra by the random phase approximation (RPA) method. The presence of multiple competing interchain interactions is found from the analysis of the experimental spectra and is also confirmed by the DFT calculations. The interchain interactions are two orders of magnitude weaker than the nearest-neighbour intrachain interaction JJ = 8.7~meV. The DFT calculations reveal that the dominant intrachain nearest-neighbor interaction occurs via nontrivial extended superexchange pathways Ni--O--V--O--Ni involving the empty dd orbital of V ions. The present single crystal study also allows us to correctly position SrNi2_2V2_2O8_8 in the theoretical DD-JJ_{\perp} phase diagram [T. Sakai and M. Takahashi, Phys. Rev. B 42, 4537 (1990)] showing where it lies within the spin-liquid phase.Comment: 12 pages, 12 figures, 3 tables PRB (accepted). in Phys. Rev. B (2015

    The economics of managing crop diversity on-farm: Case studies from the genetic resources policy initiative

    Get PDF
    The purpose of this book is to assess a variety of economic issues as they relate to agro-biodiversity and show how addressing these issues can assist in agro-biodiversity policy-making. This is illustrated using empirical data from some of the countries (Ethiopia, Nepal and Zambia) which are part of the Genetic Resources Policy Initiative. The empirical chapters apply the relevant economic methods, including regression analysis, choice experiments, hedonic pricing, contingent valuation and farm business income analysis. The authors discuss the economics of managing crop diversity on-farm in the context of crop variety attribute preferences, farmers' perception of agro-biodiversity loss, and value addition and marketing of the products of traditional crop varieties. The case studies include detailed analysis of traditional varieties of groundnut, maize, rice, sorghum, and teff. The results are relevant not only to GRPI countries but also to other countries concerned with the sustainable utilization of these resources. Overall, the studies illustrate how genetic resources issues can be integrated into rural development interventions

    Materials, Structures and Manufacturing: An Integrated Approach to Develop Expandable Structures

    Get PDF
    Membrane dominated space structures are lightweight and package efficiently for launch; however, they must be expanded (deployed) in-orbit to achieve the desired geometry. These expandable structural systems include solar sails, solar power arrays, antennas, and numerous other large aperture devices that are used to collect, reflect and/or transmit electromagnetic radiation. In this work, an integrated approach to development of thin-film damage tolerant membranes is explored using advanced manufacturing. Bio-inspired hierarchical structures were printed on films using additive manufacturing to achieve improved tear resistance and to facilitate membrane deployment. High precision, robust expandable structures can be realized using materials that are both space durable and processable using additive manufacturing. Test results show this initial work produced higher tear resistance than neat film of equivalent mass. Future research and development opportunities for expandable structural systems designed using an integrated approach to structural design, manufacturing, and materials selection are discussed

    Feature Lines for Illustrating Medical Surface Models: Mathematical Background and Survey

    Full text link
    This paper provides a tutorial and survey for a specific kind of illustrative visualization technique: feature lines. We examine different feature line methods. For this, we provide the differential geometry behind these concepts and adapt this mathematical field to the discrete differential geometry. All discrete differential geometry terms are explained for triangulated surface meshes. These utilities serve as basis for the feature line methods. We provide the reader with all knowledge to re-implement every feature line method. Furthermore, we summarize the methods and suggest a guideline for which kind of surface which feature line algorithm is best suited. Our work is motivated by, but not restricted to, medical and biological surface models.Comment: 33 page

    Using neurophysiological signals that reflect cognitive or affective state: Six recommendations to avoid common pitfalls

    Get PDF
    Estimating cognitive or affective state from neurophysiological signals and designing applications that make use of this information requires expertise in many disciplines such as neurophysiology, machine learning, experimental psychology, and human factors. This makes it difficult to perform research that is strong in all its aspects as well as to judge a study or application on its merits. On the occasion of the special topic “Using neurophysiological signals that reflect cognitive or affective state” we here summarize often occurring pitfalls and recommendations on how to avoid them, both for authors (researchers) and readers. They relate to defining the state of interest, the neurophysiological processes that are expected to be involved in the state of interest, confounding factors, inadvertently “cheating” with classification analyses, insight on what underlies successful state estimation, and finally, the added value of neurophysiological measures in the context of an application. We hope that this paper will support the community in producing high quality studies and well-validated, useful applications

    Pilot trial of paclitaxel-trastuzumab adjuvant therapy for early stage breast cancer: a trial of the ECOG-ACRIN cancer research group (E2198)

    Get PDF
    BACKGROUND: Blockade of human epidermal growth factor receptor type 2 (HER2) has dramatically improved outcome for patients with HER2-positive breast cancer. Trastuzumab, an anti-HER2 monoclonal antibody, has previously demonstrated improvement in overall survival (OS) in patients with metastatic and early stage HER2-positive breast cancer. However, trastuzumab can cause congestive heart failure (CHF) with an increased frequency for patients who have also received an anthracycline. The current trial was designed to evaluate the impact of the duration of trastuzumab on CHF. METHODS: E2198 included 227 eligible women with histologically confirmed stage II or IIIA HER2-positive breast cancer. The patients were randomised to receive 12 weeks of paclitaxel and trastuzumab followed by four cycles of doxorubicin and cyclophosphamide (abbreviated Arm) or the aforementioned treatment with additional 1 year of trastuzumab (conventional Arm). The primary end point was to evaluate the safety of this variable duration of trastuzumab therapy, particularly cardiac toxicity defined as CHF or left ventricular ejection fraction decrease >10%. Secondary end points included disease-free survival (DFS) and OS. RESULTS: Compared with 12-week treatment with trastuzumab, 1 year of trastuzumab-based therapy did not increase the frequency or severity of cardiac toxicity: three patients on the abbreviated Arm and four on the conventional Arm experienced CHF. The 5-year DFS was 76% and 73% for the abbreviated and conventional Arms, respectively, with a hazard ratio (HR) of 1.3 (95% CI: 0.8-2.1; P=0.3). There was also no statistically significance difference in OS (HR, 1.4; P=0.3). CONCLUSIONS: Compared with 12 weeks of treatment, 1 year of treatment with trastuzumab did not significantly increase the risk of cardiac toxicity. Although not powered for efficacy comparisons, the longer duration of trastuzumab therapy did not demonstrate a signal for marked superiority

    Biomechanical experimental data curation: an example for main lumbar spine ligaments characterization for a MBS spine model

    Get PDF
    Series : Mechanisms and machine science, ISSN 2211-0984, vol. 24This work overviews an extensive analysis in the context of mechanical characterization of human biomaterials, carried out over a broad set of published experimental data. Focused on main lumbar spine ligaments, several test procedures are exhaustively analyzed, in order to identify possible causes for divergences that have been found in some results. Moreover, guidelines are proposed for da-ta filtering and selection. The main objective of the task was to retrieve trustworthy inputs to a hybrid Finite Element Analysis / Multibody System dynamic simulation model of the human intervertebral disc, which can be used on the prediction of nucleus prosthetics working performance
    corecore