177 research outputs found

    The Formal Dynamism of Categories: Stops vs. Fricatives, Primitivity vs. Simplicity

    Get PDF
    Minimalist Phonology (MP; Pöchtrager 2006) constructs its theory based on the phonological epistemological principle (Kaye 2001) and exposes the arbitrary nature of standard Government Phonology (sGP) and strict-CV (sCV), particularly with reference to their confusion of melody and structure. For Pöchtrager, these are crucially different, concluding that place of articulation is melodic (expressed with elements), while manner of articulation is structural. In this model, the heads (xN and xO) can license and incorporate the length of the other into their own interpretation, that is xN influences xO projections as well as its own and vice versa. This dynamism is an aspect of the whole framework and this paper in particular will show that stops and fricatives evidence a plasticity of category and that, although fricatives are simpler in structure, stops are the more primitive of the two. This will be achieved phonologically through simply unifying the environment of application of the licensing forces within Pöchtrager's otherwise sound onset structure. In doing so, we automatically make several predictions about language acquisition and typology and show how lenition in Qiang (Sino-Tibetan) can be more elegantly explained

    Mn-Containing Bioactive Glass-Ceramics: BMP-2-Mimetic Peptide Covalent Grafting Boosts Human-Osteoblast Proliferation and Mineral Deposition

    Get PDF
    The addition of Mn in bioceramic formulation is gaining interest in the field of bone implants. Mn activates human osteoblast (h-osteoblast) integrins, enhancing cell proliferation with a dose-dependent effect, whereas Mn-enriched glasses induce inhibition of Gram-negative or Gram-positive bacteria and fungi. In an effort to further optimize Mn-containing scaffolds' beneficial interaction with h-osteoblasts, a selective and specific covalent functionalization with a bioactive peptide was carried out. The anchoring of a peptide, mapped on the BMP-2 wrist epitope, to the scaffold was performed by a reaction between an aldehyde group of the peptide and the aminic groups of silanized Mn-containing bioceramic. SEM-EDX, FT-IR, and Raman studies confirmed the presence of the peptide grafted onto the scaffold. In in vitro assays, a significant improvement in h-osteoblast proliferation, gene expression, and calcium salt deposition after 7 days was detected in the functionalized Mn-containing bioceramic compared to the controls

    Nanoelectrode ensembles as recognition platform for electrochemical immunosensors

    Get PDF
    In this study we demonstrate the possibility to prepare highly sensitive nanostructured electrochemical immunosensors by immobilizing biorecognition elements on nanoelectrode ensembles (NEEs) prepared in track-etch polycarbonate membranes. The gold nanodisk electrodes act as electrochemical transducers while the surrounding polycarbonate binds the antibody-based biorecognition layer. The interaction between target protein and antibody is detected by suitable secondary antibodies labelled with a redox enzyme. A redox mediator, added to the sample solution, shuttles electrons from the nanoelectrodes to the biorecognition layer, so generating an electrocatalytic signal. This allows one to fully exploit the highly improved signal-to-background current ratio, typical of NEEs. In particular, the receptor protein HER2was studied as the target analyte. HER2 detection allows the identification of breast cancer that can be treated with the monoclonal antibody trastuzumab. NEEs were functionalized with trastuzumab which interacts specifically with HER2. The biorecognition process was completed by adding a primary antibody and a secondary antibody labelled with horseradish peroxidase. Hydrogen peroxide was added to modulate the label electroactivity; methylene blue was the redox mediator generating voltammetric signals. NEEs functionalized with trastuzumab were tested to detect small amounts of HER2 in diluted cell lysates and tumour lysates

    CERT1 mutations perturb human development by disrupting sphingolipid homeostasis

    Full text link
    Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome

    Envenomations by Bothrops and Crotalus Snakes Induce the Release of Mitochondrial Alarmins

    Get PDF
    Skeletal muscle necrosis is a common manifestation of viperid snakebite envenomations. Venoms from snakes of the genus Bothrops, such as that of B. asper, induce muscle tissue damage at the site of venom injection, provoking severe local pathology which often results in permanent sequelae. In contrast, the venom of the South American rattlesnake Crotalus durissus terrificus, induces a clinical picture of systemic myotoxicity, i.e., rhabdomyolysis, together with neurotoxicity. It is known that molecules released from damaged muscle might act as ‘danger’ signals. These are known as ‘alarmins’, and contribute to the inflammatory reaction by activating the innate immune system. Here we show that the venoms of B. asper and C. d. terrificus release the mitochondrial markers mtDNA (from the matrix) and cytochrome c (Cyt c) from the intermembrane space, from ex vivo mouse tibialis anterior muscles. Cyt c was released to a similar extent by the two venoms whereas B. asper venom induced the release of higher amounts of mtDNA, thus reflecting hitherto some differences in their pathological action on muscle mitochondria. At variance, injection of these venoms in mice resulted in a different time-course of mtDNA release, with B. asper venom inducing an early onset increment in plasma levels and C. d. terrificus venom provoking a delayed release. We suggest that the release of mitochondrial ‘alarmins’ might contribute to the local and systemic inflammatory events characteristic of snakebite envenomations
    corecore