1,406 research outputs found

    Spectral variability in Swift and Chandra observations of the Ultraluminous source NGC 55 ULX1

    Get PDF
    NGC 55 ULX1 is a bright Ultraluminous X-ray source located 1.78 Mpc away. We analysed a sample of 20 Swift observations, taken between 2013 April and August, and two Chandra observations taken in 2001 September and 2004 June. We found only marginal hints of a limited number of dips in the light curve, previously reported to occur in this source, although the uncertainties due to the low counting statistics of the data are large. The Chandra and Swift spectra showed clearly spectral variability which resembles those observed in other ULXs. We can account for this spectral variability in terms of changes in both the normalization and intrinsic column density of a two-components model consisting of a blackbody (for the soft component) and a multicolour accretion disc (for the hard component). We discuss the possibility that strong outflows ejected by the disc are in part responsible for such spectral changes.Comment: 9 pages, 6 figure; accepted to be published on MNRA

    VLT/FORS2 observations of the optical counterpart of the isolated neutron star RBS 1774

    Full text link
    X-ray observations performed with ROSAT led to the discovery of a group (seven to date) of X-ray dim and radio-silent middle-aged isolated neutron stars (a.k.a. XDINSs), which are characterised by pure blackbody spectra (kT~40-100 eV), long X-ray pulsations (P=3-12 s), and appear to be endowed with relatively high magnetic fields, (B~10d13-14 G). RBS 1774 is one of the few XDINSs with a candidate optical counterpart, which we discovered with the VLT. We performed deep observations of RBS 1774 in the R band with the VLT to disentangle a non-thermal power-law spectrum from a Rayleigh-Jeans, whose contributions are expected to be very much different in the red part of the spectrum. We did not detect the RBS 1774 candidate counterpart down to a 3 sigma limiting magnitude of R~27. The constraint on its colour, (B-R)<0.6, rules out that it is a background object, positionally coincident with the X-ray source. Our R-band upper limit is consistent with the extrapolation of the B-band flux (assuming a 3 sigma uncertainty) for a set of power-laws F_nu ~nu^alpha with spectral indeces alpha<0.07. If the optical spectrum of RBS 1774 were non-thermal, its power-law slope would be very much unlike those of all isolated neutron stars with non-thermal optical emission, suggesting that it is most likely thermal. For instance, a Rayleigh-Jeans with temperature T_O = 11 eV, for an optically emitting radius r_O=15 km and a source distance d=150 pc, would be consistent with the optical measurements. The implied low distance is compatible with the 0.04 X-ray pulsed fraction if either the star spin axis is nearly aligned with the magnetic axis or with the line of sight, or it is slightly misaligned with respect to both the magnetic axis and the line of sight by 5-10 degreesComment: 8 pages, 8 postscript figures, accepted for publication in Astronomy & Astrophysic

    Acquired tracheoesophageal fistula repair, due to prolonged mechanical ventilation, in patient with double incomplete aortic arch

    Get PDF
    We report a case of the repair of an acquired benign tracheoesophageal fistula (TEF) after prolonged mechanical invasive ventilation. Patient had an unknown double incomplete aortic arch determining a vascular ring above trachea and esophagus. External tracheobronchial compression, caused by the vascular ring, increasing the internal tracheoesophageal walls pressure determined by endotracheal and nasogastric tubes favored an early TEF development. The fistula was repaired through an unusual left thoracotomy and vascular ring dissection. TEFs are a heterogeneous group of diseases affecting critically ill patients. Operative closure is necessary to avoid further complications related to this condition. Pre-opera-tive study is mandatory to plan an adequate surgical approach

    Overlapping Schwarz methods for Fekete and Gauss-Lobatto spectral elements

    Get PDF
    The classical overlapping Schwarz algorithm is here extended to the triangular/tetrahedral spectral element (TSEM) discretization of elliptic problems. This discretization, based on Fekete nodes, is a generalization to nontensorial elements of the tensorial Gauss–Lobatto–Legendre quadrilateral spectral elements (QSEM). The overlapping Schwarz preconditioners are based on partitioning the domain of the problem into overlapping subdomains, solving local problems on these subdomains, and solving an additional coarse problem associated with either the subdomain mesh or the spectral element mesh. The overlap size is generous, i.e., one element wide, in the TSEM case, while it is minimal or variable in the QSEM case. The results of several numerical experiments show that the convergence rate of the proposed preconditioning algorithm is independent of the number of subdomains NN and the spectral degree pp in case of generous overlap; otherwise it depends inversely on the overlap size. The proposed preconditioners are also robust with respect to arbitrary jumps of the coefficients of the elliptic operator across subdomains

    A disrupted bulgeless satellite galaxy as counterpart of the ultraluminous X-ray source ESO 243-49 HLX-1

    Get PDF
    The point-like X-ray source HLX-1, close to the S0 galaxy ESO 243-49, is one the strongest intermediate-mass black hole candidates, but the nature of its counterpart is still puzzling. By means of N-body/smoothed particle hydrodynamics simulations, we investigate the hypothesis that the HLX-1 counterpart is the nucleus of a bulgeless satellite galaxy, which undergoes a minor merger with the S0galaxy.We derived synthetic surface brightness profiles for the simulated counterpart of HLX-1 in six Hubble Space Telescope (HST) filters, ranging from far ultraviolet (FUV) to infrared wavelengths, and we compared them with the observed profiles. Our model matches the emission associated with the HLX-1 counterpart in all considered filters, including the bluer ones, even without requiring the contribution of an irradiated disc. The simulation can also account for an extended FUV emission, which is hinted at by the analysis of the F140LP HST filter. This matching is impossible to achieve by assuming either a bulgy satellite, a young star cluster, or an irradiated disc component

    Cirrus clouds in convective outflow during the HIBISCUS campaign

    Get PDF
    International audienceLight-weight microlidar measurements were taken on-board a stratospheric balloon during the HIBISCUS 2004 campaign, held in Bauru, Brazil (22 S, 49 W). Tropical cirrus observations showed high mesoscale variability in optical and microphysical properties. The cirrus clouds were observed throughout the flight between 12 and 15 km height. It was found that the clouds were composed of different layers, characterized by a marked variability in height, thickness and optical properties. Trajectory analysis and mesoscale transport simulations clearly revealed that the clouds had formed in the outflow of a large and persistent convective region, while the observed optical properties and cloud structure variability could be linked to different residence times of convective-processed air in the upper troposphere. Mesoscale simulations were able to reproduce the supersaturation due to recent outflow, while it was necessary to consider the presence of other formation processes than convective hydration for cirrus forming in aged detrained anvils

    The two Ultraluminous X-ray sources in the galaxy NGC 925

    Get PDF
    NGC 925 ULX-1 and ULX-2 are two ultraluminous X-ray sources in the galaxy NGC 925, at a distance of 8.5 Mpc. For the first time, we analyzed high quality, simultaneous XMM-Newton and NuSTAR data of both sources. Although at a first glance ULX-1 resembles an intermediate mass black hole candidate (IMBH) because of its high X-ray luminosity ((2(2−-4)×10404)\times10^{40} erg s−1^{-1}) and its spectral/temporal features, a closer inspection shows that its properties are more similar to those of a typical super-Eddington accreting stellar black hole and we classify it as a `broadened disc' ultraluminous X-ray source. Based on the physical interpretation of this spectral state, we suggest that ULX-1 is seen at small inclination angles, possibly through the evacuated cone of a powerful wind originating in the accretion disc. The spectral classification of ULX-2 is less certain, but we disfavour an IMBH accreting at sub-Eddington rates as none of its spectral/temporal properties can be associated to either the soft or hard state of Galactic accreting black hole binaries.Comment: Accepted on MNRAS with very minor comments, 7 pages, 5 figures, 1 tabl

    QuantEYE: The Quantum Optics Instrument for OWL

    Full text link
    QuantEYE is designed to be the highest time-resolution instrument on ESO:s planned Overwhelmingly Large Telescope, devised to explore astrophysical variability on microsecond and nanosecond scales, down to the quantum-optical limit. Expected phenomena include instabilities of photon-gas bubbles in accretion flows, p-mode oscillations in neutron stars, and quantum-optical photon bunching in time. Precise timescales are both variable and unknown, and studies must be of photon-stream statistics, e.g., their power spectra or autocorrelations. Such functions increase with the square of the intensity, implying an enormously increased sensitivity at the largest telescopes. QuantEYE covers the optical, and its design involves an array of photon-counting avalanche-diode detectors, each viewing one segment of the OWL entrance pupil. QuantEYE will work already with a partially filled OWL main mirror, and also without [full] adaptive optics.Comment: 7 pages; Proceedings from meeting 'Instrumentation for Extremely Large Telescopes', held at Ringberg Castle, July 2005 (T.Herbst, ed.
    • …
    corecore