179 research outputs found

    Optimizing Flame Retardancy and Durability in Melamine-Formaldehyde/Solid-Urban-Waste Composite Panels

    Get PDF
    In our previous study, an innovative method for sterilization, inertization, and valorization of the organic fraction of municipal solid waste (OFMSW), to be recycled in the production of composite panels, was developed. In this follow-up work, the effects of fire retardants on fire performance, durability, and the mechanical properties of the composite panels based on OFMSW and melamine-formaldehyde resin were investigated. The performance of panels without fire retardants (control panels) was compared to panels containing either mono-ammonium phosphate (PFR) or aluminium trihydrate (ATH) at a mass fraction of 1% and 10% (modified panels). As shown by cone calorimetry, the total heat released was already low (about 31 MJ/m2 at 50 kW/m2) in the control panels, further decreased in the modified panels with the addition of fire retardants, and reached the lowest value (about 1.4 MJ/m2) with 10% mass fraction of PFR. Hence, the addition of fire retardants had a beneficial effect on the response to fire of the panels; however, it also reduced the mechanical properties of the panels as measured by flexural tests. The deterioration of the mechanical properties was particularly obvious in panels containing 10% mass fraction of fire retardants, and they were further degraded by artificial accelerated weathering, carried out by boiling tests. Ultimately, the panels containing PFR at a mass fraction of 1% offered the best balance of fire resistance, durability, and mechanical performance within the formulations investigated in this study

    Epoxy Composites Using Wood Pulp Components as Fillers

    Get PDF
    The components of wood, especially lignin and cellulose, have great potential for improving the properties of polymer composites. In this chapter, we discuss some of the latest developments from our lab on incorporating wood-based materials into epoxy composites. Lignosulfonate was used as a flame retardant and cellulose nanocrystals were used as reinforcing materials. Lignosulfonate will disperse well in epoxy, but phase separates during curing. An epoxidation reaction was developed to immobilize the lignosulfonate during curing. The lignosulfonate–epoxy composites were characterized using microcombustion and cone calorimetry tests. Cellulose also has poor interfacial adhesion to hydrophobic polymer matrices. Cellulose fibers and nanocrystals aggregate when placed in epoxy resin, resulting in very poor dispersion. The cellulose nanocrystal surface was modified with phenyl containing materials to disrupt cellulose interchain hydrogen bonding and improve dispersion in the epoxy resin. The cellulose nanocrystal – epoxy composites were characterized for mechanical strength using tensile tests, water barrier properties using standardized water absorption, glass transition temperatures using differential calorimetry, and aggregation and dispersion using microscopic techniques

    Char-forming behavior of nanofibrillated cellulose treated with \u3ci\u3eglycidyl phenyl\u3c/i\u3e POSS

    Get PDF
    Cellulose-reinforced composites have received much attention due to their structural reinforcing, light weight, biodegradable, non-toxic, low cost and recyclable characteristics. However, the tendency for cellulose to aggregate and its poor dispersion in many polymers, such as polystyrene, continues to be one of the most challenging roadblocks to large scale production and use of cellulose-polymer composites. In this study, nanofibrillated cellulose (NFC) is modified using GlycidylPhenyl-POSS (a polyhedral oligomeric silsesquioxane). The product yield, morphology, and crystallinity are characterized using a variety of spectroscopy and microscopy techniques. Thermal analyses are performed using thermal gravimetric analysis and pyrolysis combustion flow calorimetry

    Modeling of Polymer Clay Nanocomposite for a Multiscale Approach

    Full text link
    The mechanical property enhancement of polymer reinforced with nano-thin clay platelets (of high aspect ratio) is associated with a high polymer-filler interfacial area per unit volume. The ideal case of fully separated (exfoliated) platelets is generally difficult to achieve in practice: a typical nanocomposite also contains multilayer stacks of intercalated platelets. Here we use numerical modelling to investigate how the platelet properties affect the overall mechanical properties. The configuration of platelets is modelled using a statistical interpretation of the Representative Volume Element (RVE) approach, in which an ensemble of "sample" heterogeneous material is generated (with periodic boundary conditions). A simple Monte Carlo algorithm is used to place non-intersecting platelets in the RVE according to a specified set of statistical distributions. The effective stiffness of the platelet-matrix system is determined by measuring the stress (using standard Finite Element analysis) produced as a result of applying a small deformation to the boundaries, and averaging over the entire statistical ensemble. In this work we determine the way in which the platelet properties (curvature, filling fraction, stiffness, aspect ratio) and the number of layers in the stack affect the overall stiffness enhancement of the nanocomposite. Thus, we bridge the gap between behaviour on the macroscopic scale with that on the scale of the nano-reinforcement, forming part of a multi-scale modelling framework.Comment: 39 pages, 19 figure
    corecore