636 research outputs found

    A Simulation of High Latitude F-Layer Instabilities in the Presence of Magnetosphere-Ionosphere Coupling

    Get PDF
    A magnetic-field-line-integrated model of plasma interchange instabilities is developed for the high latitude ionosphere including magnetospheric coupling effects. We show that primary magnetosphere-ionosphere coupling effect is to incorporate the inertia of the magnetospheric plasma in the analysis. As a specific example, we present the first simulation of the E x B instability in the inertial regime, i.e., nu sub i omega where nu sub i is the ion-neutral collision frequency and omega is the wave frequency. We find that the inertial E x B instability develops in a fundamentally different manner than in the collisional case ni sub i omega. Our results show that striations produced in the inertial regime are spread and retarded by ion inertial effects, and result in more isotropic irregularities than those seen in the collisional case

    Influence of a temperature-dependent shear viscosity on the azimuthal asymmetries of transverse momentum spectra in ultrarelativistic heavy-ion collisions

    Full text link
    We study the influence of a temperature-dependent shear viscosity over entropy density ratio η/s\eta/s, different shear relaxation times τπ\tau_\pi, as well as different initial conditions on the transverse momentum spectra of charged hadrons and identified particles. We investigate the azimuthal flow asymmetries as a function of both collision energy and centrality. The elliptic flow coefficient turns out to be dominated by the hadronic viscosity at RHIC energies. Only at higher collision energies the impact of the viscosity in the QGP phase is visible in the flow asymmetries. Nevertheless, the shear viscosity near the QCD transition region has the largest impact on the collective flow of the system. We also find that the centrality dependence of the elliptic flow is sensitive to the temperature dependence of η/s\eta/s.Comment: 13 pages, 20 figure

    Simulation of the magnetosphere with a new three dimensional MHD code and adaptive mesh refinement: Preliminary results

    Get PDF
    We present the first results from a new unstructured mesh three dimensional finite element MHD code which uses dynamic solution-adaptive mesh refinement in a manner similar to our two dimensional finite element MHD code /31/. The problem being considered here is the interaction of the solar wind with the earth's magnetosphere, using a three-dimensional Cartesian approximation. Our results strongly indicate that such adaptive mesh techniques have the ability to resolve structures in the three dimensional MHD flow field that would otherwise be possible only with orders of magnitude greater cost and that are most likely beyond the capability of present supercomputers

    An adaptive numerical method for the Vlasov equation based on a multiresolution analysis.

    Get PDF
    International audienceIn this paper, we present very first results for the adaptive solution on a grid of the phase space of the Vlasov equation arising in particles accelarator and plasma physics. The numerical algorithm is based on a semi-Lagrangian method while adaptivity is obtained using multiresolution analysis

    Formation and Primary Heating of The Solar Corona - Theory and Simulation

    Full text link
    An integrated Magneto-Fluid model, that accords full treatment to the Velocity fields associated with the directed plasma motion, is developed to investigate the dynamics of coronal structures. It is suggested that the interaction of the fluid and the magnetic aspects of plasma may be a crucial element in creating so much diversity in the solar atmosphere. It is shown that the structures which comprise the solar corona can be created by particle (plasma) flows observed near the Sun's surface - the primary heating of these structures is caused by the viscous dissipation of the flow kinetic energy.Comment: 46 pages including 7 pages of figures, Submitted to Phys.Plasma

    Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    Full text link
    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table

    The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers

    Get PDF
    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS

    Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    Get PDF
    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques

    Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    Get PDF
    The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.Comment: 38 pages, 19 figures, 5 tables; author list changed; submitted to JINS
    • …
    corecore