454 research outputs found

    Forecasting time series by means of evolutionary algorithms

    Get PDF
    Proceeding of: 8th International Conference in Parallel Problem Solving from Nature - PPSN VIII , Birmingham, UK, September 18-22, 2004.The time series forecast is a very complex problem, consisting in predicting the behaviour of a data series with only the information of the previous sequence. There is many physical and artificial phenomenon that can be described by time series. The prediction of such phenomenon could be very complex. For instance, in the case of tide forecast, unusually high tides, or sea surges, result from a combination of chaotic climatic elements in conjunction with the more normal, periodic, tidal systems associated with a particular area. Too much variables influence the behaviour of the water level. Our problem is not only to find prediction rules, we also need to discard the noise and select the representative data. Our objective is to generate a set of prediction rules. There are many methods tying to achieve good predictions. In most of the cases this methods look for general rules that are able to predict the whole series. The problem is that usually the time series has local behaviours that dont allow a good level of prediction when using general rules. In this work we present a method for finding local rules able to predict only some zones of the series but achieving better level prediction. This method is based on the evolution of set of rules genetically codified, and following the Michigan approach. For evaluating the proposal, two different domains have been used: an artificial domain widely use in the bibliography (Mackey-Glass series) and a time series corresponding to a natural phenomenon, the water level in Venice Lagoon.Investigation supported by the Spanish Ministry of Science and Technology through the TRACER project under contract TIC2002-04498-C05-

    Lazy training of radial basis neural networks

    Get PDF
    Proceeding of: 16th International Conference on Artificial Neural Networks, ICANN 2006. Athens, Greece, September 10-14, 2006Usually, training data are not evenly distributed in the input space. This makes non-local methods, like Neural Networks, not very accurate in those cases. On the other hand, local methods have the problem of how to know which are the best examples for each test pattern. In this work, we present a way of performing a trade off between local and non-local methods. On one hand a Radial Basis Neural Network is used like learning algorithm, on the other hand a selection of the training patterns is used for each query. Moreover, the RBNN initialization algorithm has been modified in a deterministic way to eliminate any initial condition influence. Finally, the new method has been validated in two time series domains, an artificial and a real world one.This article has been financed by the Spanish founded research MEC project OPLINK::UC3M, Ref: TIN2005-08818-C04-0

    An optoelectronic circuit with a light source, an optical waveguide and a sensor all on silicon: Results and analysis of a novel system

    Get PDF
    AbstractA full analysis of an optoelectronic circuit on silicon composed by a light emitter, an optical waveguide and a photodetector is achieved. The light emitter is based on silicon rich oxide multilayers. The multilayer structure exhibits an electroluminescence spectra from 400nm to 800nm. Light emitter and optical waveguide are located next to each other in a novel topology that allows the direct impact of the photons to the depletion layer of the sensor, increasing the efficiency. An optical rib-type waveguide and multi-modal, using Si3N4 and SiO2 as core and cladding materials, is considered to propagate the light from the light emitter to the sensor. Analysis of the waveguide reveals that the optimal height is 1.25µm, when a width of 5µm and a fractional height of 0.8 are used. A relative transmittance of the optical waveguide shows that the propagated light maintains the wide spectrum. A planar diode is used as photodetector. The proposal-integrated structure shows that light impinges directly on the depleted zone, improving detection and performance of the diode. Finally, a description of the novel optoelectronic circuit is addressed

    Modeling flocks with perceptual agents from a dynamicist perspective

    Get PDF
    Computational simulations of flocks and crowds have typically been processed by a set of logic or syntactic rules. In recent decades, a new generation of systems has emerged from dynamicist approaches in which the agents and the environment are treated as a pair of dynamical systems coupled informationally and mechanically. Their spontaneous interactions allow them to achieve the desired behavior. The main proposition assumes that the agent does not need a full model or to make inferences before taking actions; rather, the information necessary for any action can be derived from the environment with simple computations and very little internal state. In this paper, we present a simulation framework in which the agents are endowed with a sensing device, an oscillator network as controller and actuators to interact with the environment. The perception device is designed as an optic array emulating the principles of the animal retina, which assimilates stimuli resembling optic flow to be captured from the environment. The controller modulates informational variables to action variables in a sensory-motor flow. Our approach is based on the Kuramoto model that describes mathematically a network of coupled phase oscillators and the use of evolutionary algorithms, which is proved to be capable of synthesizing minimal synchronization strategies based on the dynamical coupling between agents and environment. We carry out a comparative analysis with classical implementations taking into account several criteria. It is concluded that we should consider replacing the metaphor of symbolic information processing by that of sensory-motor coordination in problems of multi-agent organizations

    A search for dark matter among Fermi-LAT unidentified sources with systematic features in Machine Learning

    Full text link
    Around one third of the point-like sources in the Fermi-LAT catalogs remain as unidentified sources (unIDs) today. Indeed, these unIDs lack a clear, univocal association with a known astrophysical source. If dark matter (DM) is composed of weakly interacting massive particles (WIMPs), there is the exciting possibility that some of these unIDs may actually be DM sources, emitting gamma rays from WIMPs annihilation. We propose a new approach to solve the standard, Machine Learning (ML) binary classification problem of disentangling prospective DM sources (simulated data) from astrophysical sources (observed data) among the unIDs of the 4FGL Fermi-LAT catalogue. Concretely, we artificially build two systematic features for the DM data which are originally inherent to observed data: the detection significance and the uncertainty on the spectral curvature. We do it by sampling from the observed population of unIDs, assuming that the DM distributions would, if any, follow the latter. We consider different ML models: Logistic Regression, Neural Network (NN), Naive Bayes and Gaussian Process, out of which the best, in terms of classification accuracy, is the NN, achieving around 93% performance. Applying the NN to the unIDs sample, we find that the degeneracy between some astrophysical and DM sources can be partially solved within this methodology. Nonetheless, we conclude that there are no DM source candidates among the pool of 4FGL Fermi-LAT unIDs.Comment: 13 pages, 14 figures, ready for submission to MNRA

    A theoretical reflection on smart shape modeling

    Get PDF
    This paper presents, as far as the authors are aware, a complete and extended new taxonomy of shape specification modeling techniques and a characterization of shape design systems, all based on the relationship of users’ knowledge to the modeling system they use to generate shapes. In-depth knowledge of this relationship is not usually revealed in the regular university training courses such as bachelor’s, master’s and continuing education. For this reason, we believe that it is necessary to modify the learning process, offering a more global vision of all the currently existing techniques and extending training in those related to algorithmic modeling techniques. We consider the latter to be the most powerful current techniques for modeling complex shapes that cannot be modeled with the usual techniques known to date. Therefore, the most complete training should include everything from the usual geometry to textual programming. This would take us a step further along the way to more powerful design environments. The proposed taxonomy could serve as a guideline to help improve the learning process of students and designers in a complex environment with increasingly powerful requirements and tools. The term “smart” is widely used nowadays, e.g. smart phones, smart cars, smart homes, smart cities... and similar terms such as “smart shape modeling”. Nowadays, the term smart is applied from a marketing point of view, whenever an innovation is used to solve a complex problem. This is the case for what is currently called smart shape modeling. However, in the future; this concept should mean a much better design environment than today. The smart future requires better trained and skilled engineers, architects, designers or technical students. This means that they must be prepared to be able to contribute to the creation of new knowledge, to the use of innovations to solve complex problems of form, and to the extraction of the relevant pieces of intelligence from the growing volume of knowledge and technologies accessible today. Our taxonomy is presented from the point of view of methods that are possibly furthest away from what is considered today as “intelligent shape modeling” to the limit of what is achievable today and which the authors call “Generic Shape Algorithm”. Finally, we discuss the characteristics that a shape modeling system must have to be truly “intelligent”: it must be “proactive” in applying innovative ideas to achieve a solution to a complex problem

    Dialectical Interrelation Between: Problematic Situation, Real Problem, Scientific Problem, Object and Field, in the Investigation Design: A Necessary Reflection

    Get PDF
    All research responds to the need of solutions to a problem that directly or indirectly affects society. The development of the same largely certifies and determines the constant search for solutions. The main objective of the present study was to arrive at a clear conceptualization, as complete as possible, of some the most important terms that come up during an investigation design: Problematic Situation, Real Problem, Scientific Problem, and Object and Field, given the visible shortcomings observed in pre- and post-graduate theses when the research work is being developed and defended. The methodology consisted of basically developing a reflection around these terms (the vision that different authors have in this regard was very helpful), as well as the presentation of varied examples contributed to see the meaning of these important concepts more clearly. The study shows in a scientifically grounded way the achievement of the above. The way in which the presentation of the different concepts was handled removes any possibility of mistakes. Keywords: methodology scientific investigation, problem, object, field. Resumen Toda investigación parte del apremio en dar una respuesta a la solución de un problema que afecta de una manera directa o indirecta a la Sociedad. En gran medida, el propio desarrollo de la misma compulsa y determina esa constante búsqueda de soluciones. El objetivo principal del presente estudio fue llegar a una conceptualización clara, y lo más acabada posible, de algunos de los más importantes términos que se manejan durante el diseño de una investigación: Situación Problémica, Problema Real, Problema Científico, Objeto y Campo, dada las visibles falencias que se observan en tesistas de pre y postgrado a la hora de desarrollar y defender sus trabajos de investigación. La metodología consistió, básicamente, en desarrollar una reflexión en torno a estos términos; para lo cual resultó de gran ayuda la visión que tienen diferentes autores al respecto; así como, la exposición de variados ejemplos contribuyó a ver más definidamente el significado de estos importantes conceptos. El estudio muestra de forma científicamente fundamentada el logro de lo anterior. La forma en que se maneja la presentación de los diferentes conceptos aleja toda posibilidad de equívocos. Palabras clave: metodología investigación científica, problema, objeto, campo

    Evidence for the activity and paleoseismicity of the Padul fault (Betic Cordillera, southern Spain)

    Get PDF
    There is evidence of recent tectonic activity in the proximity of Padul, in the central sector of the Betic Cordillera. The principal active fault in this region is the Padul normal fault, running NW-SE, which displays spectacular geomorphological and structural features owing to its recent activity. However, there is no evidence of earthquakes of moderate-high magnitude occurring in this area during the historical or the instrumental period. In the vicinity of Padul we identified various soft-sediment deformation structures produced by liquefaction which we attributed to seismic shocks of a moderate-high magnitude. These structures are situated in detritic sediments, intercalated with layers of peat, which have enabled dating of these paleoearthquakes to the late Pleistocene (approx. 30,000 to 35,000 yr BP). Moreover, field observations in sediments of alluvial fans in the vicinity of the Padul fault, together with a retrodeformation analysis of an outcrop, enabled various deformation events to be dated to the recent Quaternary period

    Recent tectonic and morphostructural evolution of Byers Peninsula (Antarctica): insight into the development of the South Shetland Islands and Bransfield Basin

    Get PDF
    Byers Peninsula forms the western extremity of the Livingston Island (Antarctica) in the continental South Shetland Block. This tectonic block is bounded by the South Shetland Trench to the north, the Bransfield back-arc basin to the south, and extends to the South Scotia Ridge on the east. Westwards it is connected to the Antarctic Plate by a broad deformation zone located at the southern end of the Hero Fracture Zone. In Byers Peninsula we analyzed more than 1,200 lineaments, and 359 fault planes from 16 sites, both in sedimentary and intrusive igneous rocks. Statistical analysis of lineaments and mesoscopic fractures, with a length varying between 31 and 1,555 m, shows a NW-SE maximum trend, with two NE-SW and ENE-WSW secondary maximums. Fault orientation analysis shows similar trends suggesting that most of the lineaments correspond to fractures. Due to the absence of striated faults and the lack of kinematic evidence on the regime in most of the analyzed faults we have used the Search Grid paleostress determination method. The results obtained allow us to improve and complete the data on the recent evolution of the South Shetland Block. In this complex geodynamic setting, Byers Peninsula has been subjected to NNW-SSE to NNE-SSW extension related to Bransfield Basin opening and NE-SW and NW-SE local compressions respectively associated to Scotia-Antarctic plate convergence and the South Shetland Trench subduction.La Península Byers se localiza en el extremo occidental de la Isla Livingston (Antártida) que pertenece al bloque continental de las Shetland del Sur. Este bloque tectónico está limitado al norte por la Fosa de las Shetland del Sur, al sur por la cuenca de trasarco de Bransfield, y hacia el este se extiende por la Dorsal Sur de Scotia. Hacia el oeste conecta con la placa Antártica a través de una amplia zona de deformación localizada en la prolongación meridional de la Zona de Fractura Hero. En este trabajo se han analizado conjuntamente más de 1.200 lineamientos, así como 359 planos de fallas en 16 estaciones en rocas sedimentarias e ígneas de la Península Byers. El análisis estadístico de los lineamientos y las fracturas a escala mesoscópica, con una longitud que oscila entre 31 y 1.555 m, muestran una orientación máxima NO-SE, con dos máximos secundarios de dirección NE-SO y ENE-OSO. El análisis de las fracturas muestra orientaciones similares que sugieren que gran parte de estos lineamientos están relacionados con fracturas. La ausencia de indicadores cinemáticos de calidad en la mayor parte de las fracturas sólo nos ha permitido aplicar el método de Redes de Búsqueda para el cálculo de paleoesfuerzos. Los resultados obtenidos son compatibles con los obtenidos en otros sectores del Bloque de las Shetland del Sur. En este complejo contexto geodinámico, la Península Byers ha estado sometida a extensión NNW-SSE/ NNE-SSW ligada a la apertura de la cuenca de Bransfield, así como a compresión local NE-SO y NO-SE asociada respectivamente a la convergencia entre las placas Scotia y Antártica, y a la subducción en la Fosa de las Shetland del Sur
    corecore