
Lazy Training of Radial Basis Neural Networks

José M. Valls, Inés M. Galván, and Pedro Isasi

Universidad Carlos III de Madrid - Departamento de Informática,
Avenida de la Universidad, 30 - 28911 Leganés (Madrid), Spain

jvalls@inf.uc3m.es

Abstract. Usually, training data are not evenly distributed in the input
space. This makes non-local methods, like Neural Networks, not very ac-
curate in those cases. On the other hand, local methods have the problem
of how to know which are the best examples for each test pattern. In this
work, we present a way of performing a trade off between local and non-
local methods. On one hand a Radial Basis Neural Network is used like
learning algorithm, on the other hand a selection of the training patterns
is used for each query. Moreover, the RBNN initialization algorithm has
been modified in a deterministic way to eliminate any initial condition
influence. Finally, the new method has been validated in two time series
domains, an artificial and a real world one.

Keywords: Lazy Learning, Local Learning, Radial Basis Neural Net-
works, Pattern Selection.

1 Introduction

When the training data are not evenly distributed in the input space, the
non-local learning methods could be affected by decreasing their generaliza-
tion capabilities. One way of resolving such problem is by using local learning
methods[3,9]. Local methods use only partially the set of examples during the
learning process. They select, from the whole examples set, those that consider
more appropriate for the learning task. The selection is made for each new test
pattern presented to the system, by means of some kind of similarity measure-
ment to that pattern. k-NN [4] is a typical example of these systems, in which the
selected learning patterns are the k closest to the test pattern by some distance
metric, usually the Euclidean distance.

Those methods, usually known as lazy learning or instance-based learning
algorithms [1], have the inconvenience of being computationally slow, and highly
dependent on the number of examples selected and on the metric used, being
frequent the situations where an Euclidean metric might not be appropriate.

Bottou and Vapnik [2] introduce a dual, local/non-local, approach to give good
generalization results in non-homogeneous domains. This approach is based on
the selection, for each test pattern, of the k closest examples from the training
set. With these examples, a neural network is trained in order to predict the
test pattern. This is a good combination between local and non-local learning.
However, the neural network used is a linear classifier and the method assumes

© 1

Referencia bibliográfica
Published in:
Artificial Neural Networks: ICANN 2006. Berlin: Springer, 2006. P. 198-207 (Lecture Notes in Computer Science; 4131)

that Euclidean distance is an appropriate metric. Besides, it considers that all
test patterns have the same structure but some domains would require different
behaviors when being in different regions.

In this work we introduce some modifications in the general procedure of [2],
by considering the use of Radial Basis Neural Networks (RBNN)[6,5]. RBNN
have some advantages when using dual techniques: they are non-linear, universal
approximators [7] and therefore the metric becomes a non-critical factor; besides,
their training is very fast, without increasing significatively the computational
cost of standard lazy approaches.

We propose to use RBNN with a lazy learning approach, making the selection
of training patterns based on a kernel function. This selection is not homoge-
neous, as happened in [2]; by opposite it is detected, for each testing pattern,
how many training patterns would be needed, and what is the importance in the
learning process of each one of them. This importance is taken into consideration,
in the form of a weight, in the learning process of the network.

When a lazy approach is combined with RBNN, two important aspects must
be taken into account. In one hand, the initialization of the RBNN training al-
gorithm is a critical factor that influences their performance. This algorithm has
been modified in a deterministic way to eliminate any initial condition influence.
In other hand, it may occur that no training pattern is selected for certain test
patterns, due to the distribution of data in the input space. In those case the
system must provide some answer. We propose two different approaches to treat
this problem.

The final method results to be a dual local non-local method, where the ini-
tialization of the network is deterministic and the method is able to determine
the degree of locality of each region of the space, by means of a kernel function
that could be considered as a parameter, and modified appropriately. In some
cases a test pattern could be considered as non-local in the sense that it corre-
sponds to more frequent situations. In this case almost the totality of the training
patterns will be selected, and the method behaves like an non-local approach.
This transaction between local and non-local behavior is made automatically.

2 Description of the Method

The learning method proposed in this work has been called LRBNN (Lazy RBNN
method) and is based on the selection, from the whole training data, of an appro-
priate subset of training patterns in order to improve the answer of the network
for a novel pattern. For each new pattern received or query, a new subset of
training examples is selected. The main idea consists of selecting those pat-
terns close to the new query instance, in terms of the Euclidean distance. In
order to give more importance to the closest examples, a weighting measure
that assigns a weight to each training example is applied. This is done by using
a kernel function which depends on the Euclidean distance from the training
pattern to the query. In this work, the inverse function (K(d) = 1/d, where d

2

is the distance from the training pattern to the new query) is used. A more
detailed information about the use of this function can be found in [8].

To carry out this idea, a n-dimensional sphere centered at the test pattern is
established, in order to select only those patterns placed into it. Its normalized
radius (respect to the maximum distance from any example to the query), called
rr, will be used to select the training patterns situated into the sphere, being
rr a parameter that must be established before the application of the learning
algorithm. Next, the sequential structure of LRBNN method is summarized.

Let q = (q1, ..., qn) be the query instance. Let X be the whole available training data
set:X = {(xk,yk) k = 1 . . . N ;xk = (xk1, . . . , xkn);yk = (yki, . . . , ykm)}. For each q,

1. The standard Euclidean distances dk from the query to each training example are
calculated. Then, the relative distance drk is calculated for each training pattern:
drk = dk/dmax, where dmax is the distance from the novel pattern to the furthest
training pattern.

2. A kernel function K() is used to calculate a weight for each training pattern from
its distance to the query. This function is the inverse of the relative distance drk:
K(xk) = 1/drk; k = 1 . . . N

3. These values K(xk) are normalized in such a way that the sum of them equals the
number of training patterns in X. These normalized values are called normalized
frequencies, fnk.

4. Both drk and fnk are used to decide whether the training pattern is selected and
-in that case- how many times is included in the training subset. They are used to
generate a natural number, nk, following the next rule:

if drk < rr then nk = int(fnk) + 1 else nk = 0 (1)

At this point, each training pattern in X has an associated natural number, nk,
which indicates how many times the pattern (xk, yk) will be used to train the
RBNN in order to predict the query q.

5. A new training subset associated to q, Xq , is built up. Given a pattern (xk, yk)
from the original training set X, it will be included in Xq if nk > 0. Besides,
(xk, yk) will be randomly placed nk times in Xq .

6. The RBNN is trained using Xq : the neurons centers are calculated in an unsuper-
vised way using K-means algorithm in order to cluster the input training patterns
included in the subset Xq . The neurons widths are evaluated as the geometric
mean of the distances from each neuron center to its two nearest centers, and the
RBNN weights are estimated in a supervised way in order to minimize the mean
square error measured in the training subset Xq.

In order to apply the learning method to train RBNN, two features must
be taken into account: On one hand, the results would depend on the random
initialization of the K-means algorithm which is used to determine the locations
of the RBNN centers and must be applied for each query. On the other hand,
when the test pattern is located in a region of the input space where the examples
are scarce, it could happen that no training examples are selected. We present
solutions to both problems, which are described next.

3

K-means initialization. Having the objective of achieving the best perfor-
mance, a deterministic initialization, instead of the usual random ones, is pro-
posed. The idea is to obtain a prediction of the network with a deterministic
initialization of the centers whose accuracy is similar to the one obtained when
several random initializations are done. The initial location of the centers will de-
pend on the location of the closest training examples selected. The deterministic
initialization is obtained as follows:

– Let (x1,x2, . . . ,xl) be the l selected training patterns, inversely ordered by
their distance to the query instance. Let m be the number of hidden neurones
of the RBNN to be trained.

– If m ≤ l then the center of the ith neuron is initialized to the xi position,
for i = 1, 2, . . . , m. Otherwise (m > l), l neurones will be initialized to the
xi position, for i = 1, 2, . . . , l, and the remaining m − l neurones (lets call
this number p) will be randomly initialized in the following way:

• Mq, the centroid of the set Xq, is evaluated.
• p centers (c1q, c2q,cpq) are randomly generated, such as

‖cjq − Mq‖ < ε, j = 1, 2, . . . , p , where ε is a very small real number.

Empty training set. It has been observed that when the input space data is
highly dimensional, in certain regions of it the data density can be so small that
the sphere centered at the query instance does not include any train pattern
into it if the relative radius is small. When this situation occurs, an alternative
way to select the training patterns must be taken. In our work, we propose two
different approaches which are experimentally evaluated.

1. If the subset Xq associated to a query q is empty, then we apply the method
of selection to the closest training pattern, as if it was the test pattern. Thus,
the selected set will have, at least, one element.

2. If Xq is empty, then the network is trained with X , the set formed by all
the training patterns. In other words, the network is trained as usual, with
all the available patterns.

3 Experimental Validation

We have applied LRBNN to two domains, the Mackey-Glass and the Venice
Lagoon time series. As it was remarked in section 2, the relative radius rr must
be given as an external parameter of the method in order to study its influence
on the performance of the model. Besides, RBNN with different architectures -
i.e. different number of hidden neurons- must be trained so that the influence of
the network architecture can also be studied.

The method incorporates solutions regarding to the initialization of centers
and the possibility of having empty training sets. These solutions are validated
in the experiments where we have applied the lazy approach with both ways
of initializing the centers: the random and the deterministic one. Moreover, in
the cases where some test patterns can not be predicted because the associ-
ated training subset is empty, the approaches mentioned in section 2 have been
applied.

4

3.1 An Artificial Time Series Prediction Problem: The
Mackey-Glass Time Series

The Mackey-Glass time series is a well known artificial time series widely used in
the literature about RBNN, [10],[6]. The data used in this work has been gener-
ated following the studies mentioned above. The task for the RBNN is to predict
the value of the time series at point x[t + 50] from the earlier points (x[t], x[t −
6], x[t − 12], x[t − 18]). 1000 data points form the training set, corresponding to
the sample time between 3500 and 4499. The test set is composed by the points
corresponding to the time interval [4500, 5000]. Both sets have been normalized
in the interval [0, 1]. The proposed LRBNN method has been applied to this arti-
ficial time series, where RBNN of different architectures have been trained during
500 learning cycles varying the relative radius from 0.04 to 0.24.

Table 1. Mean errors with random initialization of centers. Mackey-Glass time series

Hidden Neurones
rr 7 11 15 19 23 27 NP %PP

0.04 0.02527 0.02641 0.02683 0.02743 0.02691 0.02722 45 91
0.08 0.02005 0.01891 0.01705 0.01571 0.01716 0.01585 0 100
0.12 0.02379 0.01954 0.01792 0.01935 0.01896 0.01940 0 100
0.16 0.02752 0.02223 0.01901 0.02106 0.02228 0.02263 0 100
0.2 0.03031 0.02427 0.02432 0.02287 0.02281 0.02244 0 100

Table 2. Mean errors with deterministic initialization. Mackey-Glass time series

Hidden Neurones
rr 7 11 15 19 23 27 NP %PP

0.04 0.02904 0.03086 0.03096 0.03109 0.03231 0.03295 45 91
0.08 0.01944 0.01860 0.01666 0.01565 0.01551 0.01585 0 100
0.12 0.02131 0.01742 0.01644 0.01607 0.01628 0.01602 0 100
0.16 0.02424 0.02029 0.01812 0.01729 0.01783 0.01809 0 100
0.2 0.02837 0.02083 0.01927 0.01874 0.02006 0.02111 0 100

In order to show that the deterministic initialization lead to an appropri-
ate performance of RBNN when they are trained following the lazy learning
approach, experiments with the lazy approach where the neurons centers are
randomly initialized are also made. Table 1 shows the mean performance of the
method for five random initializations, when RBNN with different number of
hidden neurons are trained. Each value of the error for a specific number of
neurons and radius corresponds to the mean value of five different mean errors.
On the other hand, when the proposed deterministic initialization is applied, the
obtained results are shown in table 2. We can observe that the error values are
slightly better than the ones obtained when the neurons centers were randomly
located. We must emphasize the advantage of this method where a single run is

5

needed whereas if the usual K-means algorithm is applied, several initializations
must be made in order to ensure an adequate performance of the method.

The columns named ”NP” displays the number of ”null patterns”, that is,
test patterns for which the number of selected training patterns is zero. This
situation might arise because of the dimensionality of the problem and the non-
uniform distribution of data. The ”PP” column displays the percentage of test
patterns that are correctly answered (”Predicted Patterns”). As it is shown,
when rr = 0.04, there are 45 test patterns for which the networks can not make
a prediction because the associated training sets are empty. Thus, these test
patterns are discarded, corresponding the error values to the rest of patterns,
that is, to the 91% of the whole test set.

We have applied the two alternative ways of treating these anomalous patterns
are presented. Method (a), that keeps the local approach,and Method (b) that
renounce to the local approach and follows a global one. With the aim of studying
the performance of both approaches, RBNN of different architectures are trained
when a relative radius of 0.04 is taken. Both Method (a) and Method (b) have
been applied and the obtained error values are shown in table 3, where we can
see that method (b) behaves slightly worse than method (a) in all the cases.
Thus, when a local approach is taken, the method gets better results than when
all the available patterns are used to train the networks.

Table 3. Null patterns processing (rr = 0.04). Mackey-Glass time series.

Hidden Neurones
7 11 15 19 23 27 NP %PP

Method (a) 0.02974 0.03043 0.03132 0.03114 0.03309 0.03373 45 100
Method (b) 0.03385 0.03641 0.03545 0.03464 0.03568 0.03408 45 100

As for the influence of the relative radius and the number of hidden neurons, it
is possible to observe that the performance of the networks is scarcely influenced
by the value of the relative radius when it is bigger than a certain value and the
number of neurons is big enough. The mean error decreases with the radius
until rr = 0.08, and then it maintains its value nearly constant as the radius
increases if the number of neurons is bigger than 7. Thus, the relative radius
is not a critical parameter if the number of neurons is bigger than 7 and the
relative radius is bigger than 0.08. When the number of neurons is small, the
performance of the networks gets worse as the radius increases. This is explained
because the number of training patterns selected is very big and the number of
neurons of the RBNN are insufficient to fit such training set.

3.2 A Real Time Series Prediction Problem: The Venice Lagoon
Time Series

The Venice lagoon time series represents the behavior of the water level at Venice
lagoon. Unusually high tides result from a combination of chaotic climatic ele-
ments in conjunction with the more normal, periodic, tidal systems associated

6

with a particular area. The most famous example of flooding in the Venice lagoon
occurred in November 1966 when, driven by strong winds, the Venice Lagoon
rose by nearly 2 m. above the normal water level. That phenomenon is known as
“high water” and many efforts have been made in Italy to develop systems for
predicting sea levels in Venice and mainly for the prediction of the high water
phenomenon [11].

There is a great amount of data representing the behavior of the Venice La-
goon time series. However, the part of data associated to the stable behavior
of the water is very abundant as opposed to the part associated to high wa-
ter phenomena. This situation leads to the following: the RBNN trained with a
complete data set is not very accurate in predictions of high water phenomena.
Hence, the aim in this context is to observe whether a selection of training pat-
terns may help to obtain better predictions. A training data set of 3000 points
corresponding to the water level measured each hour has been extracted from
available data in such a way that both stable situations and high water situa-
tions appear represented in the set. High-water situations are considered when
the level of water is not lower than 110 cm. 20 test patterns have also been
extracted from the available data and they represent a situation when the water
level is higher than 110 cm.

In order to apply LRBNN, different RBNN architectures have been trained
during 500 learning cycles, and the relative radius has been fixed to different
values from 0.04 to 0.2. As in the previous domain, two sets of experiments have
been done: the first one corresponds to the usual, random K-means initialization;
in order to obtain representative results, five runs of the method have been
carried out and the mean of the results is showed in table 4.

The second set of experiments, carried out only once, corresponds to the de-
terministic initialization of the neurons centers. The results are displayed on
table 5. As it happened on the previous domains, when the deterministic initial-
ization of the centers is done, the results are similar or slightly better than when
the centers are randomly located.

Table 4. Mean errors with random initialization of centers. Venice Lagoon time series

Hidden Neurones
rr 7 11 15 19 23 27 NP %PP

0.04 0.03596 0.03866 0.04035 0.04031 0.04015 0.04169 14 30
0.08 0.03286 0.03330 0.03150 0.03547 0.03799 0.03476 2 90
0.12 0.03219 0.02693 0.02490 0.02365 0.02677 0.02738 0 100
0.16 0.02487 0.02506 0.02554 0.02783 0.02600 0.02603 0 100
0.2 0.03350 0.03035 0.03094 0.03139 0.03155 0.03179 0 100

It is important to observe that there are null patterns even when the relative
radius grows to 0.08. When rr = 0.04, 14 test patterns, out of 20, can not be
predicted. Thus, only a 30% of the test set can be properly predicted. And still
for rr = 0.08 2 patterns are not predicted. The anomalous situations are now
more frequent and this is explained as follows: the dimensionality of this problem

7

Table 5. Mean errors with deterministic initialization. Venice Lagoon time series.

Hidden Neurones
rr 7 11 15 19 23 27 NP %PP

0.04 0.03413 0.03378 0.03328 0.03465 0.03404 0.03389 14 30
0.08 0.03181 0.03028 0.03062 0.03041 0.03148 0.03017 2 90
0.12 0.02967 0.02682 0.02269 0.02234 0.02235 0.02643 0 100
0.16 0.02869 0.02398 0.02913 0.02059 0.02514 0.02552 0 100
0.2 0.03769 0.02420 0.02411 0.02728 0.02288 0.03336 0 100

is higher than the former one because this series problem has been modeled as a
six-dimension function; besides, there are regions of the input space whose data
density is very low. The test set has been generated so that its data represent
the high water situations, and the training examples which corresponds to these
unfrequent situations are very scarce. Thus, the null patterns processing methods
presented in this work are essential in the LRBNN model. Table 6 shows the
errors obtained when both methods (a) and (b) are applied if null patterns are
found. It is important to realize that, although it seems that the results are worse
than those seen on table 5, a 100% of the test patterns are properly predicted.

Table 6. Null patterns processing. Venice Lagoon time series.

Hidden Neurones
rr Meth 7 11 15 19 23 27 NP %PP

0.04 (a) 0.06042 0.06276 0.06292 0.06186 0.06330 0.06352 14 100
0.04 (b) 0.09542 0.08128 0.06672 0.06239 0.06333 0.06500 14 100
0.08 (a) 0.03685 0.03447 0.03011 0.03197 0.02792 0.03231 2 100
0.08 (b) 0.04497 0.04382 0.03572 0.03407 0.03266 0.03441 2 100

In this domain, the differences between both methods are significant, specially
when the relative radius is 0.04. In this case, 14 null patterns are found, that is,
70% of the whole test set. We can appreciate that method (a) achieves lower er-
rors that method (b). Thus, when a lazy learning approach is applied the result is
better than when the RBNN are trained with all the available training patterns.

It is possible to observe that, as in previous cases, when the relative radius
is small, mean errors are high, due to the shortage of selected training patterns,
and as the relative radius increases, the mean error decreases and then it does
not change significatively. Thus, as it happened with the previous domains, the
relative radius is not a critical parameter if the number of neurons and the
relative radius are bigger enough.

3.3 Lazy Learning Versus Global Learning

In order to compare the lazy learning strategy (LRBNN) with the traditional one,
RBNN with different number of hidden neurons (from 5 to 150) have been trained,

8

Table 7. Lazy learning versus traditional learning

Mackey-Glass time series Venice Lagoon time series
LRBNN 0.01551 (rr = 0.08, 23 neurons) 0.02059 (rr = 0.16, 19 neurons)

Traditional Method 0.10273 (110 neurons) 0.09605 (50 neurons)

in a global way, using the whole training data set in order to build a global ap-
proximation. In this work, the traditional learning has been carried out using a
training and a validation data set, stopping the iterative process when both errors
become stabilized. The standard K-means algorithm has been used and several
experiments with different initial centers locations are made. In both approaches,
the same data sets have been used. In table 7, the best results obtained in both
domains for both methods, lazy and traditional ones, are shown. As it is possible
to observe, in both domains the performance of the local method is significatively
better than the performance of the traditional learning approach.

4 Conclusions

In this work, we try to complement the good characteristics of local and global
approaches by using a lazy learning method for selecting the training set, using
RBNN for making predictions. RBNN have some advantages: they are universal
approximators and therefore the assumption of local linear behavior is no longer
needed; besides, their training is very fast, without increasing significatively the
computational cost of standard local learning approaches. We present a method
(LRBNN) that can get the locality of the input space, and then uses a non-linear
method to approximate each region of the input space. In addition, the selection
of patterns is made using a kernel function, taking into account the distribution
of data.

When a lazy learning strategy is used, two important aspects related to RBNN
training and patterns selection have been taken into account. In the first place,
the initialization of the neurons centers is a critical factor that influences RBNN
performance. Usually, the initial location of centers are randomly established, but
in a lazy strategy, in which a network must be trained for each new query, random
initialization must be avoided. For this reason, in this work, the algorithm has
been modified in a deterministic way to eliminate any initial condition influence
with the objective of achieving the best performance. Regarding to the selection
procedure, in which the Inverse kernel function is used, it may occur that no
training pattern is selected for certain test patterns, due to the distribution of
data in the input space. We have proposed and validated two different approaches
to treat this problem.

LRBNN has been applied to two different domains: an artificial time series
(the well known Mackey-Glass time series) and a real one (representing the
Venice Lagoon water level). For both domains, we present the results obtained
by LRBNN when a deterministic centers initialization is made. Besides, with
the aim of showing the advantages of this deterministic initialization, the same
method is applied but the RBNN are trained with a random initialization of their

9

centers. We show the mean results of several random initializations. As we said
before, LRBNN provides two alternative ways of guarantying the selection of
training examples for all the query instances. When the use of these alternative
methods is necessary, the obtained results are also showed. Finally, LRBNN
performance is compared with the performance of RBNN trained using a global
approach, that is, using the whole training set.

The results obtained by LRBNN improves significatively the ones obtained by
RBNN trained in a global way. Besides, the proposed deterministic initialization
of the neurons centers produces similar or slightly better results than the usual
random initialization, being thus preferable because only one run is necessary.
Moreover, the method is able to predict 100% of the test patterns, even in
those extreme cases when no train examples would be selected using the normal
selection method. The experiments show that the relative radius, parameter of
the method, is not a critical factor because if it reaches a minimum value and
the network has a sufficient number of neurons, the error on the test set keeps
its low value relatively constant.

Thus, we can conclude that the combination of lazy learning and RBNN, can
produce significant improvements in some domains.

Acknowledgments. This article has been financed by the Spanish founded
research MEC project OPLINK::UC3M, Ref: TIN2005-08818-C04-02

References

1. D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms. Ma-
chine Learning, 6:37–66, 1991.

2. L. Bottou and V. Vapnik. Local learning algorithms. Neural Computation,
4(6):888–900, 1992.

3. C.G. Atkenson, A.W. Moore, and S. Schaal. Locally weighted learning. Artificial
Intelligence Review, 11:11–73, 1997.

4. B.V. Dasarathy (Editor). Nearest neighbour(NN) norms: NN pattern classification
techniques. IEEE Computer Society Press, 1991.

5. J. Ghosh and A. Nag. An Overview of Radial Basis Function Networks. R.J.
Howlett and L.C. Jain (Eds). Physica Verlag, 2000.

6. J.E. Moody and C. Darken. Fast learning in networks of locally tuned processing
units. Neural Computation, 1:281–294, 1989.

7. J. Park and I.W. Sandberg. Universal approximation and radial-basis-function
networks. Neural Computation, 5:305–316, 1993.

8. J.M. Valls, I.M. Galván, and P. Isasi. Lazy learning in radial basis neural networks: a
way of achieving more accurate models. Neural Processing Letters, 20:105–124, 2004.

9. D. Wettschereck and T. Dietterich. Improving the perfomance of radial basis
function networks by learning center locations. Advances in Neural Information
Processing Systems, 4:1133–1140, 1992.

10. L. Yingwei, N. Sundararajan, and P. Saratchandran. A sequential learning scheme
for function approximation using minimal radial basis function neural networks.
Neural Computation, 9:461–478, 1997.

11. J.M. Zald́ıvar, E. Gutiérrez, I.M. Galván, F. Strozzi, and A. Tomasin. Forecasting
high waters at Venice Lagoon using chaotic time series analysis and nonlinear
neural networks. Journal of Hydroinformatics, 2:61–84, 2000.

10

