25 research outputs found

    Cell membrane modulation as adjuvant in cancer therapy

    Get PDF
    Cancer is a complex disease involving numerous biological processes, which can exist in parallel, can be complementary, or are engaged when needed and as such can replace each other. This redundancy in possibilities cancer cells have, are fundamental to failure of therapy. However, intrinsic features of tumor cells and tumors as a whole provide also opportunities for therapy. Here we discuss the unique and specific makeup and arrangement of cell membranes of tumor cells and how these may help treatment. Interestingly, knowledge on cell membranes and associated structures is present already for decades, while application of membrane modification and manipulation as part of cancer therapy is lagging. Recent developments of scientific tools concerning lipids and lipid metabolism, opened new and previously unknown aspects of tumor cells and indicate possible differences in lipid composition and membrane function of tumor cells compared to healthy cells. This field, coined Lipidomics, demonstrates the importance of lipid components in cell membrane in several illnesses. Important alterations in cancer, and specially in resistant cancer cells compared to normal cells, opened the door to new therapeutic strategies. Moreover, the ability to modulate membrane components and/or properties has become a reality. Here, developments in cancer-related Lipidomics and strategies to interfere specifically with cancer cell membranes and how these affect cancer treatment are discussed. We hypothesize that combination of lipid or membrane targeted strategies with available care to improve chemotherapy, radiotherapy and immunotherapy will bring the much needed change in treatment in the years to come

    Application of different methods to formulate PEG-liposomes of oxaliplatin: Evaluation in vitro and in vivo

    Get PDF
    In this work the film method (FM), reverse-phase evaporation (REV) and the heating method (HM) were applied to prepare PEG-coated liposomes of oxaliplatin with natural neutral and cationic lipids, respectively. The formulations developed with the three methods, showed similar physicochemical characteristics, except in the loading of oxaliplatin, which was statistically lower (P<0.05) using the HM. The incorporation of a semi-synthetic lipid in the formulation developed by FM, provided liposomes with a particle size of 115 nm associated to the lowest polydispersity index and the highest drug loading, 35%, compared to the other two lipids, suggesting an increase of the membrane stability. That stability was also evaluated according to the presence of cholesterol, the impact of the temperature, and the application of different cryoprotectans during the lyophilization. The results indicated long-term stability of the developed formulation, because after its intravenous in-vivo administration to HT-29 tumor bearing mice was able to induce an inhibition of tumor growth statistically higher (P < 0.05) than the inhibition caused by the free drug. In conclusion, the FM was the simplest method in comparison with REV and HM to develop in vivo stable and efficient PEG-coated liposomes of oxaliplatin with a loading higher than those reported for REV

    Quantification of pharmacokinetic profiles of PD-1/PD-L1 antibodies by validated ELISAs

    Get PDF
    Immunotherapy has changed the paradigm of cancer treatments. In this way, several combinatorial strategies based on monoclonal antibodies (mAb) such as anti (a)-PD-1 or anti (a)-PD-L1 are often reported to yield promising clinical benefits. However, the pharmacokinetic (PK) behavior of these mAbs is a critical issue that requires selective analytical techniques. Indeed, few publications report data on a-PD1/a-PD-L1 exposure and its relationship with therapeutic or toxic effects. In this regard, preclinical assays allow the time profiles of antibody plasma concentrations to be characterized rapidly and easily, which may help to increase PK knowledge. In this study, we have developed and validated two in-house ELISAs to quantify a-PD-1 and a-PD-L1 in plasma collected from tumor-bearing mice. The linear range for the a-PD-1 assay was 2.5–125 ng/mL and 0.11–3.125 ng/mL for the a-PD-L1 assay, whereas the intra-and inter-day precision was lower than 20% for both analytes. The PK characterization revealed a significant decrease in drug exposure after administration of multiple doses. Plasma half-life for a-PD-1 was slightly shorter (22.3 h) than for a-PD-L1 (46.7 h). To our knowledge, this is the first reported preclinical ELISA for these immune checkpoint inhibitors, which is sufficiently robust to be used in different preclinical models. These methods can help to understand the PK behavior of these antibodies under different scenarios and the relationship with response, thus guiding the choice of optimal doses in clinical settings

    Functional Effect of the p22phox -930A/G Polymorphism on p22phox Expression and NADPH Oxidase Activity in Hypertension

    Get PDF
    Oxidative stress induced by superoxide is implicated in hypertension. NADPH oxidase is the main source of superoxide in phagocytic and vascular cells, and the p22phox subunit is involved in NADPH oxidase activation. Recently we reported an association of 930A/G polymorphism in the human p22phox gene promoter with hypertension. This study was designed to investigate the functional role of this polymorphism in hypertension. We thus investigated the relationships between the 930A/G polymorphism and p22phox expression and NADPH oxidase–mediated superoxide production in phagocytic cells from 70 patients with essential hypertension and 70 normotensive controls. Genotyping of the polymorphism was performed by restriction fragment length polymorphism. NADPH oxidase activity was determined by chemiluminescence assays, and p22phox mRNA and protein expression was measured by Northern and Western blotting, respectively. Compared with hypertensive subjects with the AA/AG genotype, hypertensive subjects with the GG genotype exhibited increased (P 0.05) phagocytic p22phox mRNA (1.26 0.06 arbitrary unit [AU] versus 0.99 0.03 AU) and protein levels (0.58 0.05 AU versus 0.34 0.04 AU) and enhanced NADPH oxidase activity (1998 181 counts/s versus 1322 112 counts/s). No differences in these parameters were observed among genotypes in normotensive cells. Transfection experiments on vascular smooth muscle cells showed that the A-to-G substitution of this polymorphism produced an increased reporter gene expression in hypertensive cells. Nitric oxide production, as assessed by measurement of serum nitric oxide metabolites, was lower in GG hypertensive subjects than in AA/AG hypertensive subjects. In conclusion, these results suggest that hypertensive subjects carrying the GG genotype of the p22phox 930A/G polymorphism are highly exposed to NADPH oxidase-mediated oxidative stress

    Targeting melanoma with immunoliposomes coupled to anti-MAGEAI TCR-like single-chain antibody

    Get PDF
    Therapy of melanoma using T-cells with genetically introduced T-cell receptors (TCRs) directed against a tumor-selective cancer testis antigen (CTA) NY-ESO1 demonstrated clear antitumor responses in patients without side effects. Here, we exploited the concept of TCR-mediated targeting through introduction of single-chain variable fragment (scFv) antibodies that mimic TCRs in binding major histocompatibility complex-restricted CTA. We produced scFv antibodies directed against Melanoma AntiGEn A1 (MAGE A1) presented by human leukocyte antigen A1 (HLA-A1), in short M1/A1, and coupled these TCR-like antibodies to liposomes to achieve specific melanoma targeting. Two anti-M1/A1 antibodies with different ligand-binding affinities were derived from a phage-display library and reformatted into scFvs with an added cysteine at their carboxyl termini. Protein production conditions, ie, bacterial strain, temperature, time, and compartments, were optimized, and following production, scFv proteins were purified by immobilized metal ion affinity chromatography. Batches of pure scFvs were validated for specific binding to M1/A1-positive B-cells by flow cytometry. Coupling of scFvs to liposomes was conducted by employing different conditions, and an optimized procedure was achieved. In vitro experiments with immunoliposomes demonstrated binding of M1/A1-positive B-cells as well as M1/A1-positive melanoma cells and internalization by these cells using flow cyt

    Association of increased phagocytic NADPH oxidasedependent superoxide production with diminished nitric oxide generation in essential hypertension

    Get PDF
    Objective: Oxidative stress has been implicated in the pathogenesis of hypertension and its complications through alterations in nitric oxide (NO) metabolism. This study was designed to investigate whether a relationship exists between phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent superoxide anion (•O2-) production and NO generation in patients with essential hypertension. Methods: Superoxide production was assayed by chemiluminescence under baseline and stimulated conditions on mononuclear cells obtained from hypertensives (n = 51) and normotensives (n = 43). NO production was evaluated by determining serum NO metabolites, nitrate plus nitrite (NOx). Results: Although there were no differences in baseline •O2- production between normotensives and hypertensives, the •O2- production in phorbol myristate acetate (PMA)-stimulated mononuclear cells was increased (P < 0.05) in hypertensives compared with normotensives. The PMA-induced •O2- production was completely abolished by apocynin, a specific inhibitor of NADPH oxidase. Moreover, stimulation of •O2- production by angiotensin II and endothelin-1 was higher (P < 0.05) in cells from hypertensives than in cells from normotensives. In addition, diminished (P < 0.001) serum NOx was detected in hypertensives compared with normotensives. Interestingly, an inverse correlation (r = 0.493, P < 0.01) was found between •O2- production and NOx in hypertensives. Conclusions: Generation of •O2- mainly dependent on NADPH oxidase is abnormally enhanced in stimulated mononuclear cells from hypertensives. It is suggested that this alteration could be involved in the diminished NO production observed in these patients

    Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort

    Get PDF

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
    corecore