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Abstract 

In this work the film method (FM), reverse-phase evaporation (REV) and the heating 

method (HM) were applied to prepare PEG-coated liposomes of oxaliplatin with natural 

neutral and cationic lipids, respectively. The formulations developed with the three 

methods, showed similar physicochemical characteristics, except in the loading of 

oxaliplatin, which was statistically lower (P<0.05) using the HM.  

The incorporation of a semi-synthetic lipid in the formulation developed by FM, 

provided liposomes with a particle size of 115 nm associated to the lowest 

polydispersity index and the highest drug loading, 35%, compared to the other two 

lipids, suggesting an increase of the membrane stability. That stability was also 

evaluated according to the presence of cholesterol, the impact of the temperature, and 

the application of different cryoprotectans during the lyophilization. The results 

indicated long-term stability of the developed formulation, because after its intravenous 

in-vivo administration to HT-29 tumor bearing mice was able to induce an inhibition of 

tumor growth statistically higher (P < 0.05) than the inhibition caused by the free drug.  

In conclusion, the FM was the simplest method in comparison with REV and HM to 

develop in vivo stable and efficient PEG-coated liposomes of oxaliplatin with a loading 

higher than those reported for REV.  
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Introduction 

Liposomes are considered as efficient carriers for drugs, vaccines, nutrients, diagnostics, 

and other biomolecules [1-6]. This is due to some advantages, such as the ability to 

incorporate water and lipid soluble agents, high versatility in terms of fluidity of 

liposomal membrane, size and superficial charge [7]. The new generation of liposomes 

by the insertion of polyethylene glycol (PEG) derivatized phospholipids into liposomal 

membrane, leads to obtain sterically stabilized liposomes [3, 8-10]. The main 

characteristics of these liposomes are the decrease of their clearance [11, 12] and their 

increased accumulation in affected organ sites [13, 14]. Therefore, this system is able to 

alter the pharmacokinetics and biodistribution of the encapsulated drug [15]. In this 

way, oxaliplatin is a third generation of platinum (Pt), antitumor drug used as a first-line 

chemotherapy for metastatic colorectal cancer [16-19]. This Pt derivative shows higher 

tolerability of adverse effects than cisplatin or carboplatin [20-22]. However, its 

efficacy is relatively low due to its pharmacokinetics properties, such as high 

irreversible binding to plasmatic and tissue proteins and erythrocytes, among other 

components. For this reason, the encapsulation of oxaliplatin represents a strategy to 

overcome these limitations, delivering in a selective manner the drug into the tumor.  

On the other hand, the methods used to prepare liposomes have a significant impact in 

some physicochemical characteristics such as size or efficiency of encapsulation of the 

agent. In this way, Film method (FM) [23] and Reverse-Phase Evaporation (REV) 

method [24], have been selected by several authors as two conventional methods to 

prepare liposomes. However, in the last years other methods have been described in 

literature, one of them is the Heating method (HM) [25]. This new method is 

characterized by the absence of organic solvent for the solubilization of lipids, 

representing an advantage in terms of toxicity. In general, all methods have advantages 

and disadvantages. 
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FM is characterized by the fact that it can be used for all different types of lipid 

combinations and it is very easy to perform. The main step is the hydration of the lipids, 

and the acceptable encapsulation rates that can be obtained [26]. For REV the main step 

is in the oil/water emulsion which is diluted with further aqueous phase for liposomes 

formation. This method is very popular due to a high encapsulation rate, up to 50%, 

however the problem is the remaining solvent and the high polydispersity index (PDI) 

in the particle size. In both cases, to formulate a homogeneous population of liposomes 

regarding the particle size, it needs the application of a homegenization technique. 

Finally, the HM has not been widely applied, because few examples are only reported in 

the literature with 5-FU and DNA [27-29]. 

Taking into account that most of the publications about liposomes of oxaliplatin have 

used REV method, the aim of this work is the development of PEG-coated liposomes of 

oxaliplatin using different methods and lipids. It is also evaluated the stability of the 

formulation under different conditions. In addition, the cytotoxicity and antitumor 

effects, respectively were assayed in in-vitro and in-vivo models with colorectal cancer 

cell lines. 

 

Material and methods 

Materials 

Oxaliplatin were purchased from Sigma (Barcelona, Spain). Phosphatidylcholine (PC), 

cholesterol (Chol), soy hydrogenated L-α-phosphatidylcholine (HSPC), 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP) and 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (DSPE-PEG2000) 

were purchased from Avanti polar lipids Inc. (Alabaster, Alabama, USA). 

Methods 
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Oxaliplatin liposomes preparation 

Three different methods were carried out to develop oxaliplatin loaded liposomes. 

Film  Method 

Liposomes containing oxaliplatin were prepared employing the thin film hydratation 

method following the basic specifications described by Bangham et al [23]. Briefly, 

lipids were dissolved in chloroform forming a mixture. The organic solvent was then 

removed by rotary evaporation under reduced pressure (Büchi-R144, Switzerland) at 

room temperature (RT) to obtain a film on the wall of the flask. The dry lipid film was 

hydrated with a solution of oxaliplatin dissolved in glucose 5% (2 mg/ml). The 

dispersion of the lipid was facilitated by mechanical shaking in an ultrasound bath for 1 

min. To control the particle diameter, the emulsion was extruded through a 

polycarbonate membrane (Mini-Struder Set, Avanti Polar Lipids Inc (Albaster, 

Alabama, USA)) with a pore size of 100 nm.  

Reverse Phase Evaporation Method 

This method, described by Szoka and Papahadjopoulos [24], is used to prepare 

liposomes with a large internal aqueous space. Lipids solubilized in a mixture of 

chloroform:diethyl ether (1:2, v/v) were added to the aqueous phase containing 

oxaliplatin (4 mg/mL) dissolved in glucose 5%, in a ratio 3:1 (v/v) between organic and 

aqueous phase. The mixture was sonicated at RT for 5 min, and placed on the rotary 

evaporator to remove the organic solvent under reduced pressure (200 mm Hg). At this 

point, the material forms a viscous gel, which becomes an aqueous suspension by 

shaking in a vortex. The liposomes were extruded following the method described 

above. 

Modified Heating Method  
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In the last technique, the heating method [25] was combined with a gradient of pH [30].  

The lipids were hydrated in a citrate solution (pH 4), and mixed in a bath-ultrasound for 

1 min. The mixture was extruded as it has been described in the previous methods, and 

the excess of citrate was removed by ultrafiltration (Amicon with a cut-off membrane of 

10,000 MWCO membrane, Millipore, Billerica, USA). The incorporation of oxaliplatin 

(2 mg/mL) dissolved in glucose 5% was achieved by adding the drug solution together 

with Hepes solution (pH 7.8). This mixture was heated at the corresponding lipids 

transition temperature 60º C for 30 min. Afterwards, it was cooled at 4º C.  

In all methods the amount of non-encapsulated oxaliplatin was removed from the 

formulation by ultrafiltration using the Amicon devices (10,000 MWCO) The final 

formulation was washed, at least two times, with 3 ml of PBS and ultrafiltered again. To 

evaluate the efficiency of this method, a constant concentration of free oxaliplatin (1mg/mL) 

was added to empty liposomes. This mixture was shaking for 30 min at room temperature, 

and it was ultrafiltered using the Amicon system (10,000 MWCO) at 2,200 g for 30 

min. After the ultrafiltration, both aliquots were collected, the liposomes and the ultra-

filtered solution, to measure the levels of oxaliplatin by the atomic absorption 

spectrometry technique. Liposomes without oxaliplatin, empty formulation, were 

prepared following the same procedure but adding glucose 5%. 

These methods were carried out with two different types of lipids neutral, such as PC 

and cationic, DOTAP, in order to study the influence of them in the physicochemical 

characteristics of the liposomes developed, and in the efficiency of encapsulation (EE) 

of oxaliplatin.  

Characterization of liposomes 

The particle size, polydispersity index (PDI) and Zeta potential of liposomes were 

analyzed by laser diffractometry using a Zetasizer Nano-Z (Malvern Instruments, UK). 

 6



Formulations were diluted 1:100 (v/v) in deonized water in order to ensure a convenient 

scattered intensity on the detector. 

The oxaliplatin encapsulation was measured by atomic absorption spectrometry using a 

validated method. Then, the EE expressed in percentage (%), was calculated by dividing 

the drug to lipid ratio recovered after ultrafiltration in the final formulation by the initial 

amount of oxaliplatin and lipid. 

The phospholipid concentration was quantified following the Zöllner and Kirsch 

method [31]. 

Stability of liposome formulations 

Stability is a critical factor that must be considered during formulation design and 

development. Physical or colloidal stability based on size distribution under storage 

conditions as well as in a biological medium, must be considered. Based on the results 

found during liposome formulation, HSPC-liposomes developed with FM were selected 

to characterize the stability of the liposomes formulated without and with cholesterol 

[HSPC:Chol:DSPE-PEG2000]. Chol was used at 40% in the lipid mixture.  

In addition, other different approaches were followed to complete this study: 

• Drug release 

This study was carried out at two different temperatures, 4ºC used to storage the 

formulation, and 37 ºC used for in-vitro and in-vivo studies. Then, 100 µl of formulation 

mixed with 900 μl of complete cell medium was incubated at 37ºC in continuous 

shaking. Samples collected at different times: 0, 1, 4, 7 and 24 h, were ultrafiltered 

using the Amicon system (10,000 MWCO) to obtain the liposomes. The encapsulated 

and released oxaliplatin levels were quantified by atomic absorption spectrometry. In 

addition the parameters, particle size, PDI and Zeta potential, were also characterized in 

these samples. 
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•  Lyophilization assay 

Formulations were lyophilized following three different strategies: without  

cryoprotectant, with Trehalose (4:1,w/w sugar: lipid), or with L-arginine (4:1, w/w 

aminoacid: lipid). After the lyophilization process, the formulation was again 

characterized by determining size, PDI and Zeta potential. 

Transmission electron microscopy (TEM) 

Liposomes formulated without and with DSPE-PEG2000 were analyzed by TEM [32]. 

The measurements were carried out by means of a LIBRA-Zeiss 120 electron 

microscope operating at 80 kV, equipped with an electron spectrometer filtering out 

inelastic electrons for better imaging. 10 µl of the sample was incubated with OsO4 1% 

during 30 minutes. 20 µl of the mixture was deposited over carbon-coated copper grids 

with 200 mesh during 60 seconds and dried. Negative contrast staining was done with 

2% aqueous phosphotungstic acid solution. The samples were visualized 24 hours later. 

The same protocol was followed for the negative control corresponding to a sample 

without liposomes. Images were analyzed with iTEM Olympus Soft Imaging Solutions 

GmbH 5.1 software. 

Antiproliferative activity in cultured cells 

The human colorectal cancer lines HCT-116 and HT-29 (purchased from ATCC) were 

cultured in McCoy's  Medium Modified, completed with Fetal Bovine Serum (10%) and 

Penicillin-Streptomicin (0.01%), at 37ºC in a humidified atmosphere containing 5% 

CO2. All cells were used under sub-confluence condition. 

Cells were seeded into 96-well microtiter plates at a density of 10× 103 cells/well/200 μl 

of medium. After 24 h, cells were treated with several concentrations (ranged from 0.1 

to 50μM) of free oxaliplatin, empty liposomes or oxaliplatin liposomes for 72 h. The 
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survival cells after each treatment were measured with the colorimetric Neutral Red 

Assay [33]. The optical density was read at 540 nm (Labsystems iEMS Reader MF).  

In vivo study 

Twenty four female athymic nude mice weighing 20-25 g (aprox. 4 weeks old) were 

purchased from Harlan (Barcelona, Spain). Animals were housed in microisolator cages 

under positive-pressure ventilation and maintained in closed-shelf, laminar-flow racks 

to avoid contact with pathogens, odors or noises and kept under standard laboratory 

conditions. Sterilized food and water were available ad libitum. 

To induce the tumor, 100 μl of PBS containing 1.5 x 106 HT-29 cells were 

subcutaneously injected into the right flank of the mice. Tumor growth expressed as 

volume (V) was calculated by V = 4/3 π (A2B/2), where A and B correspond to the 

smallest and the largest diameter, respectively [34]. One week after cells injection and 

when the volume of the tumor was around 200 mm3, animals were randomly divided 

into four groups with 6 animals per group: Group I, control (PBS), Group II, animals 

treated with empty liposomes at corresponding dose of oxaliplatin, Group III, free 

oxaliplatin (5 mg/kg) and Group IV, oxaliplatin encapsulated in liposomes (5 mg/kg). 

The dose of liposomes was calculated based on the μg of oxaliplatin encapsulated per 

mg of lipid, avoiding a concentration higher than 1.25 mg of lipids in each injection. All 

animals received 2 consecutives cycles of treatment with 5 days apart. In each of them, 

two doses of 2.5 mg/kg every 48 h were administered. At the end of the study, animals 

were sacrificed by cervical dislocation. The tumor was removed to quantify the 

oxaliplatin levels. This organ was weighted and homogenized with nitric acid 0.1 N 

overnight (100 mg tissue/1mL acid) and diluted with 5mL of deonized water. Then, the 

samples were measured by atomic absorption spectrometry. Toxicity was also evaluated 

by measuring the body weight at the same time that the tumor. 
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The protocol of the study was approved by the Animal Experimentation Committee of 

the University of Navarra and is in accordance with the applicable European guidelines. 

Statistical analysis 

The results were expressed as the mean ± standard deviation (SD). The statistical study 

was performed using SPSS, version 15.0 for windows. All data were analyzed with the 

non-parametric Kruskall-Wallis test followed by the Mann-Whitney U test. The level of 

significance was set at P < 0.05.  

 

Results 

Characterization of  PEG-coated liposomes of Oxaliplatin 

Film Method 

The results found with FM are shown in Table 1. The particle size was similar to two 

formulations as it was expected, due to the use of the extrusion technique with the same 

type of membrane. The Zeta potential was negative for PC, due to the combination of 

PEG and positive for DOTAP, a typical cationic lipid. In relation to the EE, the 

percentages were similar between both lipids, although it was slightly higher for PC 

than for cationic lipid (P>0.05). However, this value was higher than those reported by 

other authors [35-38]. 

Reverse Phase Evaporation Method 

REV is the most common technique used to encapsulate platinum derivatives. Table 1 

shows the results found for liposomes of oxaliplatin, where all parameters were very 

similar for both lipids, except the Zeta potential, as it was expected. The EE for drug 

was slightly lower for DOTAP, but this difference was not significant (P>0.05), 

suggesting that the method ruled in the same way with independence of the ionic charge 

of the lipid.  
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Heating Method Modified 

This method has been modified adding citrate and Hepes buffers to reach a gradient of 

pH. This change was because the amount of oxaliplatin incorporated into liposomes 

without difference of pH between inside-outside, was very low, 6% approximately. 

However, when the oxaliplatin was in a solution of pH 7.8, the encapsulation rate was 

higher than 20%. Although the size and Zeta potential obtained in these formulations, 

were similar to those observed with the other two methods, and the EE was lower 

(P<0.05) (Table 1). 

No differences were observed between liposomes with vs. without oxaliplatin in each of 

the methods (data not shown). 

The three methods can be considered for manufacturing liposomes of oxaliplatin. 

However the REV was one of the most complex due to the number of steps. In fact, 

several initial conditions of oxaliplatin/lipid ratio were tested to increase the loading, 

but this value did not increase when the amount of oxaliplatin was higher than 4 

mg/mL. In addition, the liposome suspension showed quite high polydispersity in terms 

of size. The reason could be that to obtain homogeneous population of liposomes the 

extrusion technique could be applied with two types of membranes before the 

evaporation step.  

On the other hand, although HM has the advantage to produce liposomes without 

volatile organic solvents to dissolve the lipids, the EE for oxaliplatin was the lowest 

compared to FM or REV. The main step is the incorporation of the drug into the 

liposomes previously formulated by heating at temperatures not lower than the 

transition temperature (Tc) of the lipids. This Tc was around 60º C, which is not high 

enough to modify the stability of the platinum molecule. 
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Based on the results found in Table 1, the FM appeared to be the simplest method to 

prepare liposomes with an adequate size, PDI and EE of oxaliplatin. Since PC and 

DOTAP were used as two basic lipids for selecting the method, another semisynthetic 

hydrogenated lipid, HSPC, was included. This lipid was of interest because is one of the 

main components of several marketed liposomal formulations. Lipids with different 

degree of saturation in their aliphatic chain seem to provide a higher stabilization effect 

to the liposomal membrane. The physicochemical parameters of this formulation were 

similar to those obtained for the liposomes formulated with PC. Thus, the particle size 

for this formulation was 115.6 ± 2.0 nm, with a Zeta potential of -18.4 ± 3.9 mV, the EE  

was 34.23 ± 2.9 % and a loading of 68.5 ± 4.2 μg /mg lipid. Moreover, the PDI was 

lower than the PC formulation, 0.034 ± 0.01 vs. 0.161 ± 0.02, suggesting that HSPC 

contributed to increase the stabilization of the membrane. Therefore HSPC-DSPE-

PEG2000 liposomes were selected for the next studies. 

 Stability assay 

Previous studies showed that at 4 ºC the formulations were stable in relation to size, 

Zeta potential and EE, at least for one month. The impact of several factors such as the 

inclusion of Chol, the temperature, different solutions for the incubation and freeze-

drying processes, was also investigated to evaluate the retention of oxaliplatin into the 

liposomes. Table 2 shows that at 37ºC the inclusion of the sterol increased the stability 

of the membrane, although the difference in the retention of oxaliplatin between both 

formulations, with vs. without Chol, was only 10%. However, the drug release in the 

culture cell medium was slower for liposomes with Chol, suggesting that this release 

takes time, because Chol is able to stabilize the lipid bilayers. Therefore, a depot effect 

in tumor area could be achieved using this PEGylated liposomal formulation. This 

effect represents an advantage to oxaliplatin because, the drug would be more stable in 
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the blood circulation and could be released slowly at the tumor site. In addition, the PDI 

had a higher value for liposomes without Chol. This observation is compatible with an 

aggregation of the particles.  

Since the structural integrity of the liposomes for long period of time is one of the 

objectives to optimize the formulation, the effect of the dehydration/reconstitution 

process was assayed in this work. Two different cryoprotectants, Trehalose and L-

arginine were used to prevent the thermodynamic instability evaluated by the changes in 

the size and Zeta potential. L-arginine was included with the thought of the possible 

problems of diabetic patients. The results listed in Table 3, showed that the presence in 

the formulation of Chol together with Trehalose or L-arginine, was the best combination 

to obtain a stable formulation. Both cryoprotectans displayed similar behaviour, 

supporting the fact that both could be used.  

Transmission electron microscopy (TEM) 

Figure 1 shows that HSPC:Chol of liposomes were small vesicles with a concentric 

interior space. In the case of liposomes associated with DSPE-PEG2000, a white coated 

film was observed in the surface [32]. 

Cytotoxic studies in colon cancer cell lines 

The two cell lines were sensitive for oxaliplatin with IC50 values between 9.2-2.8 μM 

for the free drug. Oxaliplatin-loaded liposomes showed a reduced cytotoxicity. This 

effect was observed for the three types of lipids used in the formulation. Table 4 lists the 

IC50 values found for all treatments in both cell lines, HT-29 and HCT-116. HCT-116 

was more sensitive to oxaliplatin, free and encapsulated, than HT-29. The cytotoxic 

effect was higher in both cell lines for free than for the encapsulated oxaliplatin in 

anionic liposomes, PC LP and HSPC LP. However in the case of the cationic liposomes, 

the value of the IC50 was very similar to the value for the free drug. This difference 
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could be explained by the effect of the empty DOTAP liposomes. They were able to 

reduce the proliferative effect to 30 % compared to the control group. PC and HSPC 

liposomes without oxaliplatin did not affect the cell proliferation. 

In vivo study 

The formulation, [HSPC:Chol:DSPE-PEG2000]-oxaliplatin liposomes, was intravenously 

administered to HT-29 tumor bearing mice. The dose was selected based on previous 

results found in our group (data not shown) and on the dose reported by Abu-Lila et al 

[35-37], although the cell lines were not the same. Figure 2 shows that PEGylated 

liposomes suppressed tumor growth more efficiently than free oxaliplatin. This 

inhibition reached statistical significance (P<0.05) during the second cycle. This 

enhanced anti-tumor activity of the liposomes is in line with those results reported by 

several authors for different antitumor drugs encapsulated in PEGylated liposomes. The 

levels of oxaliplatin found in the tumor at the end of the study, were three times higher 

for encapsulated drug in comparison with free drug: 560 ± 200 vs. 190 ± 101 ng/ mg 

tissue, respectively. In addition, this dose schedule was compatible with a low toxicity 

for both treatments (Figure 3). So, the encapsulation of oxaliplatin exhibited an 

improvement in the therapeutic effect of the drug.  

Discussion 

In this work PEGylated liposomes of oxaliplatin have been developed using different 

methods. FM and REV were selected as the most common methods used to prepare 

conventional liposomes [4-5]. The HM was chosen as one of the novel methods, 

introduced in the last years. The absence of volatile organic solvents in this last method 

is the main characteristic. It represents a potential benefit in relation to the toxicity 

exerted by these components in in vivo [25]. In addition two types of lipids have been 

used to evaluate their influence in the physicochemical characteristics of the 
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formulations obtained for each type of method. The results showed that the lipid did not 

have any influence in the studied characteristics. However, in the case of the REV 

method, the particle size was slightly higher than in the FM and HM, even when all 

methods were associated to the extrusion technique with the same type of polycarbonate 

membrane. This difference could be explained by the fact that, REV is one of the most 

complex methods compared to FM and HM. For example, the main step is the 

formation of a viscous gel which is responsible of the spontaneous formation of 

liposomes dispersion [24]. The characteristics of these liposomes depend on the mixture 

(lipid-water) in the emulsion and the time for the evaporation, among other steps. This 

leads to a higher variability in the final formulations than with the other two methods, 

which are methodologically simpler.  

In the case of the HM, the encapsulation of oxaliplatin dissolved in glucose 5%, was 

extremely low (aprox. 6%). However, when a gradient of pH was reached between 

inside (pHi 4) and outside (pHo 7.8) of the liposomal formulation, the efficiency of 

encapsulation achieved levels of 20%. This result is in the same order as those values 

reported by other authors for oxaliplatin using the REV method [35-38]. In general, the 

transbilayer transport of weak acids and weak bases is more efficient in the presence of 

a pH gradient, but little or none encapsulation is observed in the absence of this gradient 

[30], as it was demonstrated for doxorubicine. 

Finally, the FM associated with the extrusion technique allowed the formulation of an 

homogenous population of liposomes following very simple steps. Although some 

liposomal formulations with other antitumor drugs have been developed using this 

method, in the case of oxaliplatin most of them have been formulated with REV. The 

main advantage of this method is the encapsulation rate which can be up to 50%. 

Nevertheless, a significant difference is found in relation to the particle size and EE of 
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oxaliplatin depending on the author. For example, with REV and neutral lipids, Abu 

Lila et al [35-37] have reported liposomes with a particle size of 200 nm and an EE of 

20 %, higher than the EE found by Suzuki et al [38]. In the last year, Yang et al [39] 

have described the methodology to develop PEG-liposomes of oxaliplatin with a 

particle size of 150 nm, and an EE of 40%. Note that this value has not been described 

how it was calculated. 

In this work, the particle size was reduced to 115.3 ± 3.5 nm obtaining an EE of 34.2 ± 

2.9 %. This loading drug was calculated as Abu Lila and coworkers have described. 

Although several concentrations of oxaliplatin (2, 4 and 5 mg/mL) were assayed, the 

loading did not change between 4 and 5 mg/mL. 

On the other hand, different techniques have been found in the literature for the removal 

of the non-encapsulated drug: the dialysis technique against 5% of dextrose [35-37] or 

the ultrafiltration [39]. In our study the applied ultrafiltration technique showed that the 

99.72% of the free drug added to empty liposomes, was in the ultrafiltered solution 

justifying its use. 

The three methods have similar behaviour for neutral and cationic lipids, as it was 

previously reported by Abu-Lila et al. [40]. This data shows that each method to 

encapsulate a specific drug, had a similar behaviour with a non-dependence of the 

superficial charge of the lipid. 

Taking into account that the formulations obtained with the three methods were very 

similar, the FM was selected to study several factors that influence the stability of the 

formulations. One of them is the use of semisynthetic lipid such as HSPC, a component 

of many marketed liposomal formulations such as, Doxil or Caelyx for doxorubicin 

(HSPC/Chol/DSPE-PEG2000); Ara-c (HSPC/Chol/DSPE-PEG2000); Lurtotecan 

(HSPC/Chol); Ambisome (HSPC/Chol/DSPG) [5, 41, 42]. Although the 
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physicochemical characteristics of HSPC liposomes were similar to those found for PC, 

the PDI was lower and the EE slightly higher. The degree of saturation of the aliphatic 

chain of the lipid confers a more dynamic structure of the membrane. This property 

should represent an advantage for entrapping more of the drugs with a low permeability 

across the cellular membranes, as in the case with oxaliplatin [7].  

Finally, HSPC-LP was selected to study other factors that influence the stability of the 

formulation. These factors were the temperature at 37 ºC, the medium of the liposomes 

incubation, and the presence of Chol in the membrane. In the case of the incorporation 

of Chol, this factor did not influence significantly the amount of oxaliplatin released 

from the formulation. After 24 h of incubation at 37ºC, both types of formulations with 

and without sterol, release oxaliplatin with a difference of 10%. This difference in drug 

concentration suggests a minimum impact in the effect. Nevertheless, the most 

important aspect in the in-vivo activity is the time-release of the drug. Therefore, this 

point could be a limitation for the formulation for further studies. In this work, the 

retention time of oxaliplatin into the formulation assayed in culture cell medium was 

slightly higher than the value found by Abu Lila et al. [37] in plasma. Plasma does not 

have the same compositions of culture cell medium, but its complexity suggests that the 

behaviour of the formulation could be similar to plasma.  

Then, the Chol exerted its function as a stabilizing agent of the liposomal membrane, 

which was reflected in the lower PDI compared to the PDI of formulations without 

Chol. Therefore, the final formulation using the mixture HSPC:Chol:DSPE-PEG2000 

was selected to assay its  in-vivo activity. 

The results found with the lyophilisation technique represent a promising strategy to 

provide a stable formulation for a long period of time. Sugars have been reported to act 

as protective agents during the dehydration/reconstitution of liposomes by preventing 
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vesicle fusion and enhancing the retention of the encapsulated compounds within the 

liposomes [43-46]. Because amino acids exhibite similar lypoprotective effect as sugars, 

L-arginine was assayed regarding the problems for diabetic patients [47]. The 

application of amino acids or sugars as potential cryoprotectants did not show 

significant differences, although in both cases, the presence of Chol lead to a marked 

stability of liposomes during the freeze-drying process. This effect has been previously 

reported by Popova and Hincha (2007) [48]. They have reported an interaction between 

phospholipids and sugars due to the presence of Chol. This sterol could increase the 

lipid space leading the sugars to interact with lipid head-groups. Nevertheless, more 

studies are required to optimize the use of cryoprotectants in the lyophilisation of 

liposomes, because the EE of the reconstituted liposomes decreased in 6.1 ± 2.9 %. 

The in-vitro antitumor activity showed that HCT-116 had a higher sensibility to 

oxaliplatin compared to HT-29. This result was supported by Kalimutho et al. [49], 

because they have reported that the status of p-53, wild-type in HCT-116 and mutated in 

HT-29, could be involved in this phenomenon explaining that difference. In this study, 

the free oxaliplatin led to a better antiproliferative effect than the encapsulated (Table 

4).  These results are according to the results reported by several authors regarding the 

IC50 for free drug vs. liposomal formulation [50]. In the case of the cationic formulation, 

its effect could be explained by the additional cytotoxicity found for empty liposomes 

discarding these liposomes for further studies. Additionally, the in- vivo toxicity of 

DOTAP liposomes have been reported in the literature [51, 52].  

On the other hand, the in-vivo study carried out with the HSPC:Chol:DSPE-PEG2000 

liposomes,  showed an efficient antitumor activity in the murine tumor-xenograft model, 

reflecting the stability and ability of the formulation to reach the tumor area. This result 

suggests that PEG-coated liposomes could act as a depot of oxaliplatin in the tumor 
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area, delaying its RES uptake due to the presence of the PEG in the surface of 

liposomes [13-15]. The antitumor activity for this formulation was more evident in-vivo 

than in-vitro, which is according to the results found by other authors [38]. Therefore, 

PEG-coated liposomes of oxaliplatin developed by the FM, the simplest method, 

provided a potent antitumor activity compared to the free drug.  

In our knowledge, this is the first study where PEG-coated liposomes of oxaliplatin 

have been developed using several methods, FM, REV and HM to compare the impact 

of them in the physicochemical parameters of the formulations, including the efficiency 

of encapsulation. Moreover, the effect of the inclusion of a semi-synthetic lipid and the 

Chol led to obtain a formulation stable during the incubation at high temperature and 

the lyophilisation process.  

Finally, the in-vivo antitumor efficiency was characterized by a reduction followed by a 

stabilization of the tumor. This effect, together with the oxaliplatin levels found in this 

organ, suggest a long-time stability of the formulation. 
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Legends to figures. 

 

Figure 1. Transmission electron microscope photograph. Left panel shows non-

pegylated liposomes (HSPC:Chol (2:1)), whereas right panel shows pegylated-

liposomes (HSPC-Chol-PEG2000 (2:1:0.2)). Bars represent 100 nm. The negative control 

is in the low panel. 

Figure 2. Time profiles of the  tumor growth after two cycles of treatments with free 

and encapsulated oxaliplatin. Each symbol represent the mean of six animals and the 

bars the corresponding standard deviation. Oxal-LP, liposomes of oxaliplatin; Oxal-

free, oxaliplatin in solution and Empty-LP, liposomes without oxaliplatin. (*P<0.05) 

Figure 3. Body weight changes in mice treated with PBS (control), empty liposomes, 

oxaliplatin liposomes and free drug. The results represent the mean ± SD. (*P <0.05) 
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Abbreviations 

PC: Phosphatidylcholine; HSPC: soy hydrogenated L-α-phosphatidylcholine; DOTAP: 

1,2-dioleoyl-3-trimethylammonium-propane; DSPE-PEG200: 1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000]; Chol: 

cholesterol; PDI: Polydispersion index; EE: encapsulation efficacy; LP: liposome; REV: 

Reverse Phase Evaporation; FM: Film Method; HM: Heating Method; RT: Room 

temperature; TC: Transition temperature; FBS: Fetal bovine serum; ED: Encapsulated 

drug; pHi: internal pH; pHo: outside pH; 5-FU: 5-fluorouracil. 
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