526 research outputs found

    Universality of Sea Wave Growth and Its Physical Roots

    Full text link
    Modern day studies of wind-driven sea waves are usually focused on wind forcing rather than on the effect of resonant nonlinear wave interactions. The authors assume that these effects are dominating and propose a simple relationship between instant wave steepness and time or fetch of wave development expressed in wave periods or lengths. This law does not contain wind speed explicitly and relies upon this asymptotic theory. The validity of this law is illustrated by results of numerical simulations, in situ measurements of growing wind seas and wind wave tank experiments. The impact of the new vision of sea wave physics is discussed in the context of conventional approaches to wave modeling and forecasting.Comment: submitted to Journal of Fluid Mechanics 24-Sep-2014, 34 pages, 10 figure

    The iron KαK_\alpha lines as a tool for magnetic field estimations in non-flat accretion flows

    Full text link
    Observations of AGNs and microquasars by ASCA, RXTE, Chandra and XMM-Newton indicate the existence of broad X-ray emission lines of ionized heavy elements in their spectra. Such spectral lines were discovered also in X-ray spectra of neutron stars and X-ray afterglows of GRBs. Recently, Zakharov et al. (MNRAS, 2003, 342, 1325) described a procedure to estimate an upper limit of the magnetic fields in regions from which X-ray photons are emitted. The authors simulated typical profiles of the iron KαK_\alpha line in the presence of magnetic field and compared them with observational data in the framework of the widely accepted accretion disk model. Here we further consider typical Zeeman splitting in the framework of a model of non-flat accretion flows, which is a generalization of previous consideration into non-equatorial plane motion of particles emitting X-ray photons. Using perspective facilities of space borne instruments (e.g. Constellation-X mission) a better resolution of the blue peak structure of iron KαK_\alpha line will allow to evaluate the magnetic fields with higher accuracy.Comment: 22 pages, 6 figure

    QUANTIFYING THE HETEROGENEITY OF ABATEMENT COSTS UNDER CLIMATIC AND ENVIRONMENTAL REGULATION CHANGES: AN INTEGRATED MODELLING APPROACH

    Get PDF
    We present here preliminary results of an integrated modelling approach combining a crop model (STICS) and an economic model (AROPAj) of European agricultural supply. This modelling framework is designed to perform quantitative analysis, regarding climate change impacts on agriculture and more generally the interactions between soils, land use, agriculture and climate integrating physical and economical elements (data, process, models). It explicitly integrates an agricultural diversity dimension with regards to economic set of choices and soil climate spatial variability. First results are given in term of quantitative analysis combining optimal land allocation (economic optimality) and “dose-response” functions related to a large set of crops in Europe, at the farm group level, covering part of the European Union (EU15). They indicate that accounting for economical and spatial variability may impact both regional aggregated scales results.Crop Production/Industries, Environmental Economics and Policy, International Relations/Trade, Land Economics/Use, Resource /Energy Economics and Policy,

    TDA-MAC : TDMA without clock synchronization in underwater acoustic networks

    Get PDF
    This paper investigates the application of underwater acoustic sensor networks for large scale monitoring of the ocean environment. The low propagation speed of acoustic signals presents a fundamental challenge in coordinating the access to the shared communication medium in such networks. In this paper, we propose two medium access control (MAC) protocols, namely, Transmit Delay Allocation MAC (TDA-MAC) and Accelerated TDA-MAC, that are capable of providing time division multiple access (TDMA) to sensor nodes without the need for centralized clock synchronization. A comprehensive simulation study of a network deployed on the sea bed shows that the proposed protocols are capable of closely matching the throughput and packet delay performance of ideal synchronized TDMA. The TDA-MAC protocols also significantly outperform T-Lohi, a classical contention-based MAC protocol for underwater acoustic networks, in terms of network throughput and, in many cases, end-To-end packet delay. Furthermore, the assumption of no clock synchronization among different devices in the network is a major advantage of TDA-MAC over other TDMA-based MAC protocols in the literature. Therefore, it is a feasible networking solution for real-world underwater sensor network deployments

    Adaptive Nonlinear Equalizer for Full-Duplex Underwater Acoustic Systems

    Get PDF

    Interference Cancellation for UWA Random Access Data Packet Transmission

    Full text link
    In underwater acoustic (UWA) random access communication networks with multiple users and data packet transmissions, the packet collisions are the main cause of the network performance degradation. The aim of this paper is to investigate interference cancellation (IC) techniques capable of resolving such collisions in a low-complexity modem with single-carrier modulation and single transducer. More specifically, in this modem, the IC is used at multiple stages of the receiver. Firstly, the IC is performed for cancelling the multipath interference to improve the equalization performance in comparison with the linear equalization and Rake combining. Secondly, the IC removes the interference from collided data packets within extracted signal segments after identifying the collisions. Finally, the IC is applied to the received baseband signal to improve the data packet detection. The modem performance is investigated in a lake experiment with intensive multipath channels. The experimental results demonstrate high detection performance of the proposed modem design and show that the proposed IC techniques can significantly improve the throughput of random access UWA networks.Comment: 13 pages, 13 figure

    Channel modeling for underwater acoustic network simulation

    Get PDF

    Linear TDA-MAC : Unsynchronized scheduling in linear underwater acoustic sensor networks

    Get PDF
    corecore