25 research outputs found

    Profilaxi de la malària en viatgers

    Get PDF
    Profilaxi de malària; Medicina del viatger; AntipalúdicsProfilaxis de malaria; Medicina del viajero; antipalúdicosMalaria prophylaxis; Traveler medicine; AntimalarialsLa malària representa la primera causa infecciosa de risc de complicacions greus i mort en viatgers internacionals. En el nostre àmbit, la majoria de casos de malària en viatgers correspon a persones que no han realitzat una quimiopro!laxi adequada i/o les estratègies per evitar la picada de mosquits no han funcionat. El col·lectiu més afectat són els immigrants que es desplacen temporalment als seus països d’origen per visitar familiars i amics, per la qual cosa cal insistir, especialment en aquest grup, a adoptar mesures de prevenció especí!ques. És molt important que les persones que han de viatjar a àrees de paludisme endèmic facin una consulta mèdica entre 4-8 setmanes prèvies al viatge. En aquesta consulta, es valorarà el risc de contraure malària i s’assessorarà segons cada cas, tenint en compte les característiques personals, l’itinerari, la durada i el tipus de viatge. Es donaran indicacions sobre les mesures de protecció personal: repel·lents, roba especí!ca i ús de mosquiteres, entre d’altres. També caldrà valorar la indicació de quimiopro!laxi amb fàrmacs. Actualment, els fàrmacs disponibles en el nostre àmbit són atovaquona/proguanil, me"oquina, doxiciclina i cloroquina. A més, s’hauran de tenir en compte situacions especials com l’embaràs i/o la immunosupressió

    Immune reactivity to Trypanosoma cruzi chimeric proteins for Chagas disease diagnosis in immigrants living in a non-endemic setting

    Get PDF
    Chagas disease; Chimeric antigens; Trypanosoma cruziMalaltia de Chagas; Antígens quimèrics; Trypanosoma cruziEnfermedad de Chagas; Antígenos quiméricos; Trypanosoma cruziBACKGROUND: Chronic Chagas Disease (CD) diagnosis is based on serological methods employing crude, semipurified or recombinant antigens, which may result in low sensitivity or cross-reactivity. To reduce these restrictions, we developed a strategy involving use of molecules containing repetitive fragments of Trypanosoma cruzi conserved proteins. Diagnostic performance of IBMP-8.1 and IBMP-8.4 chimeric antigens (Molecular Biology Institute of Paraná - IBMP in Portuguese acronym) was assessed to diagnose T. cruzi-infected and non-infected immigrants living in Barcelona (Spain), a non-endemic setting for Chagas disease. METHODS: Reactivity of IBMP-8.1 and IBMP-8.4 was assessed using an in-house automated ELISA with 347 positive and 331 negative individuals to Chagas disease. Antigenic cross-reactivity was measured with sera samples from pregnant women with Toxoplasma gondii (n = 98) and Zika virus (n = 75) antibodies. RESULTS: The area under the curve values was 1 and 0.99 for the IBMP-8.1 and IBMP-8.4 proteins, respectively, demonstrating excellent diagnostic accuracy. The reactivity index was higher for IBMP-8.1 than IBMP-8.4 in positive samples and no significant difference in reactivity index was observed in negative samples. Sensitivity ranged from 99.4% for IBMP-8.1 to 99.1% for IBMP-8.4 and was not statistically different. Specificity for IBMP-8.1 reached 100 and 99.7% for IBMP-8.4, both nearly 100% accurate. No antigenic cross-reactivity was observed and reactivity index was similar to that for negative Chagas disease individuals. CONCLUSIONS: Our results showed an outstanding performance of IBMP-8.1 and IBMP-8.4 chimeric antigens by ELISA and suggest both chimeric antigens could also be used for Chagas disease diagnosis in immigrants living in non-endemic settings

    CARB-ES-19 Multicenter Study of Carbapenemase-Producing Klebsiella pneumoniae and Escherichia coli From All Spanish Provinces Reveals Interregional Spread of High-Risk Clones Such as ST307/OXA-48 and ST512/KPC-3

    Get PDF
    Carbapenemases; High-risk clones; Whole genome sequencingCarbapenemasas; Clones de alto riesgo; Secuenciación del genoma completoCarbapenemases; Clons d'alt risc; Seqüenciació del genoma sencerObjectives: CARB-ES-19 is a comprehensive, multicenter, nationwide study integrating whole-genome sequencing (WGS) in the surveillance of carbapenemase-producing K. pneumoniae (CP-Kpn) and E. coli (CP-Eco) to determine their incidence, geographical distribution, phylogeny, and resistance mechanisms in Spain. Methods: In total, 71 hospitals, representing all 50 Spanish provinces, collected the first 10 isolates per hospital (February to May 2019); CPE isolates were first identified according to EUCAST (meropenem MIC > 0.12 mg/L with immunochromatography, colorimetric tests, carbapenem inactivation, or carbapenem hydrolysis with MALDI-TOF). Prevalence and incidence were calculated according to population denominators. Antibiotic susceptibility testing was performed using the microdilution method (EUCAST). All 403 isolates collected were sequenced for high-resolution single-nucleotide polymorphism (SNP) typing, core genome multilocus sequence typing (cgMLST), and resistome analysis. Results: In total, 377 (93.5%) CP-Kpn and 26 (6.5%) CP-Eco isolates were collected from 62 (87.3%) hospitals in 46 (92%) provinces. CP-Kpn was more prevalent in the blood (5.8%, 50/853) than in the urine (1.4%, 201/14,464). The cumulative incidence for both CP-Kpn and CP-Eco was 0.05 per 100 admitted patients. The main carbapenemase genes identified in CP-Kpn were blaOXA–48 (263/377), blaKPC–3 (62/377), blaVIM–1 (28/377), and blaNDM–1 (12/377). All isolates were susceptible to at least two antibiotics. Interregional dissemination of eight high-risk CP-Kpn clones was detected, mainly ST307/OXA-48 (16.4%), ST11/OXA-48 (16.4%), and ST512-ST258/KPC (13.8%). ST512/KPC and ST15/OXA-48 were the most frequent bacteremia-causative clones. The average number of acquired resistance genes was higher in CP-Kpn (7.9) than in CP-Eco (5.5). Conclusion: This study serves as a first step toward WGS integration in the surveillance of carbapenemase-producing Enterobacterales in Spain. We detected important epidemiological changes, including increased CP-Kpn and CP-Eco prevalence and incidence compared to previous studies, wide interregional dissemination, and increased dissemination of high-risk clones, such as ST307/OXA-48 and ST512/KPC-3.This research was supported by grants from the Instituto de Salud Carlos III (numbers PI18CIII/00030 and PI21CIII/00039). It was also supported by Plan Nacional de I + D + i 2013–2016, Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía y Competitividad, Spanish Network for Research in Infectious Diseases (grants RD16CIII/0004/0002, RD16/0016/0001, RD16/0016/0003, RD16/0016/0004, RD16/0016/0006, RD16/0016/0007, RD16/0016/0008, RD16/0016/0010, and RD16/0016/0011). Cofinanced by the European Development Regional Fund “A way to achieve Europe,” Operative Program Intelligent Growth 2014–2020. CIBER – Consorcio Centro de Investigación Biomédica en Red (CB21/13/00095, CB21/13/00012, CB21/13/00049, CB21/13/00054, CB21/13/00055, CB21/13/00068, CB21/13/00081, CB21/13/00084, and CB21/13/00099) (CIBERINFEC) and Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea – NextGenerationEU also supported this work

    Fecal carriage of extended-spectrum beta-lactamase-producing Enterobacterales in healthy Spanish schoolchildren

    Get PDF
    Background: Extended-spectrum ß-lactamase-producing Enterobacterales (ESBL-E) are a serious threat among emerging antibiotic resistant bacteria. Particularly, the number of cases of ESBL-E infections reported in children has been increasing in recent years, and approved antibiotic treatments for this age group are limited. However, information regarding the prevalence of colonization in European children, risk factors associated with colonization, and the characteristics of the colonizing strains is scarce. The aims of this study were to determine the prevalence of ESBL-E colonization in fecal samples of apparently healthy schoolchildren, to identify lifestyle routines associated with colonization, and to characterize clonal relationships and mechanisms of resistance in ESBL-E isolates. Methods: A cohort of 887 healthy children (3-13 years old) from seven primary and secondary schools in the Madrid metropolitan area was recruited between April-June 2018, and sociodemographic information and daily habits were collected. Fecal samples were screened for ESBL-E carriage in selective medium. ESBL-E isolates were further characterized by assessing molecular epidemiology (PFGE and MLST), ESBL gene carriage, and antibiotic resistance profile. This information was analyzed in conjunction with the metadata of the participants in order to identify external factors associated with ESBL-E carriage. Results: Twenty four ESBL-E, all but one Escherichia coli, were detected in 23 children (prevalence: 2.6%; 95% CI: 1.6-3.6%). Of these, seven contained the blaCTX-M-14 allele, five the blaCTX-M-15, five the blaSHV-12, three the blaCTX-M-27, three the blaCTX-M-32, and one the blaCTX-M-9. Significant clonal diversity was observed among the isolates that grouped into 22 distinct clusters (at <85% similarity of PFGE profile). ESBL-producing E. coli isolates belonged to 12 different STs, with ST10 (25%) and ST131 (17%) being the most frequent. Apart from ß-lactams, resistance to trimethoprim/sulfamethoxazole (46%), ciprofloxacin (33%), levofloxacin (33%), tobramycin (21%), and gentamicin (8%) were the most frequently detected. Conclusion: The prevalence of ESBL-E in the studied cohort of children was lower than the average colonization rate previously detected in Europe for both children and adults. E. coli was the main ESBL-producing species detected and CTX-M were the most frequently identified ESBLs. High ST diversity suggests polyclonal dissemination. Compared to other STs, ST131 isolates were associated with resistance to various antimicrobials.ML-S was supported by the Sara Borrell Program of the Instituto de Salud Carlos III (ISCIII) (CD17CIII/00017). ZM was supported by the Río Hortega Program of the ISCIII. AÁ was supported by the Garantía Juvenil Program of the Comunidad Autónoma de Madrid. SS was supported by the Miguel Servet program of ISCIII (CPII18CIII/00005). This study was funded by the ISCIII, Ministry of Economy and Competitiveness (Spain), under projects PI16CIII/00024, PI18CIII/00030, MPY380/18, and MPY516/19.S

    Leishmania infantum asymptomatic infection in inflammatory bowel disease patients under anti-TNF therapy

    Get PDF
    Background: In recent years anti-TNF therapy has been associated with leishmaniasis in immunocompromised patients from endemic areas. Nevertheless, data on asymptomatic Leishmania infection in such patients is scarce. The aim of this study was to determine the prevalence of asymptomatic infection in inflammatory bowel disease (IBD) patients treated with TNF inhibitors living in an endemic area (Catalonia) and to follow up them to study how the infection evolved. Methods: 192 IBD patients (143 Crohn's disease; 49 ulcerative colitis) from Catalonia (Spain), an area endemic for L. infantum, were recruited. Peripheral blood samples were collected and tested for anti-Leishmania antibodies by Western blotting (WB). Leishmania kinetoplast DNA was detected in peripheral blood mononuclear cells (PBMC) by a quantitative PCR. Results: Serology was positive in 3.1% and Leishmania DNA was found in 8.8%, with a low parasitic load and humoral response. The prevalence was 10.9%, patients being considered infected if they tested positive by at least one of the techniques. Eight out of the 21 patients with asymptomatic leishmaniasis were monitored for 3-8 months after the first test. None of them showed an increased parasitemia or humoral response, or developed leishmaniasis during the follow-up period. Conclusion: The prevalence of Leishmania asymptomatic infection detected in our IBD cohort is similar to that found in healthy population in close endemic areas. Due to the short monitoring period, it is not possible to reach a conclusion about the risk of Leishmania reactivation from this study

    Parasitemia Levels in Trypanosoma cruzi Infection in Spain, an Area Where the Disease Is Not Endemic: Trends by Different Molecular Approaches

    Get PDF
    Trypanosoma cruzi infection has expanded globally through human migration. In Spain, the mother-to-child route is the mode of transmission contributing to autochthonous Chagas disease (CD); however, most people acquired the infection in their country of origin and were diagnosed in the chronic phase (imported chronic CD). In this context, we assessed the quantitative potential of the Loopamp Trypanosoma cruzi detection kit (Sat-TcLAMP) based on satellite DNA (Sat-DNA) to determine parasitemia levels compared to those detected by real-time quantitative PCRs (qPCRs) targeting Sat-DNA (Sat-qPCR) and kinetoplast DNA minicircles (kDNA-qPCR). This study included 173 specimens from 39 autochthonous congenital and 116 imported chronic CD cases diagnosed in Spain. kDNA-qPCR showed higher sensitivity than Sat-qPCR and Sat-TcLAMP. According to all quantitative approaches, parasitemia levels were significantly higher in congenital infection than in chronic CD (1 × 10-1 to 5 × 105 versus >1 × 10-1 to 6 × 103 parasite equivalents/mL, respectively [P < 0.001]). Sat-TcLAMP, Sat-qPCR, and kDNA-qPCR results were equivalent at high levels of parasitemia (P = 0.381). Discrepancies were significant for low levels of parasitemia and older individuals. Differences between Sat-TcLAMP and Sat-qPCR were not qualitatively significant, but estimations of parasitemia using Sat-TcLAMP were closer to those by kDNA-qPCR. Parasitemia changes were assessed in 6 individual cases in follow-up, in which trends showed similar patterns by all quantitative approaches. At high levels of parasitemia, Sat-TcLAMP, Sat-qPCR, and kDNA-qPCR worked similarly, but significant differences were found for the low levels characteristic of late chronic CD. A suitable harmonization strategy needs to be developed for low-level parasitemia detection using Sat-DNA- and kDNA-based tests. IMPORTANCE: Currently, molecular equipment has been introduced into many health care centers, even in low-income countries. PCR, qPCR, and loop-mediated isothermal amplification (LAMP) are becoming more accessible for the diagnosis of neglected infectious diseases. Chagas disease (CD) is spreading worldwide, and in countries where the disease is not endemic, such as Spain, the parasite Trypanosoma cruzi is transmitted from mother to child (congenital CD). Here, we explore why LAMP, aimed at detecting T. cruzi parasite DNA, is a reliable option for the diagnosis of congenital CD and the early detection of reactivation in chronic infection. When the parasite load is high, LAMP is equivalent to any qPCR. In addition, the estimations of T. cruzi parasitemia in patients living in Spain, a country where the disease is not endemic, resemble natural evolution in areas of endemicity. If molecular tests are introduced into the diagnostic algorithm for congenital infection, early diagnosis and timely treatment would be accomplished, so the interruption of vertical transmission can be an achievable goal.This research was supported by the Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland (WO klob-0003), and the Surveillance Program of Chagas Disease of the National Centre for Microbiology (CNM), Instituto de Salud Carlos III (ISCIII). CNM-ISCIII research team is supported by Fundación Mundo Sano, Spain (MVP 237/19). The ISGlobal research team is supported by the Agència de Gestió d’Ajuts Universitaris i de Recerca AGAUR) (2017 SGR 00924). ISGlobal is a member of the Centres de Recerca de Catalunya (CERCA) Programme, Government of Catalonia (Spain).S

    CARB-ES-19 Multicenter Study of Carbapenemase-Producing Klebsiella pneumoniae and Escherichia coli From All Spanish Provinces Reveals Interregional Spread of High-Risk Clones Such as ST307/OXA-48 and ST512/KPC-3.

    Get PDF
    CARB-ES-19 is a comprehensive, multicenter, nationwide study integrating whole-genome sequencing (WGS) in the surveillance of carbapenemase-producing K. pneumoniae (CP-Kpn) and E. coli (CP-Eco) to determine their incidence, geographical distribution, phylogeny, and resistance mechanisms in Spain. Methods: In total, 71 hospitals, representing all 50 Spanish provinces, collected the first 10 isolates per hospital (February to May 2019); CPE isolates were first identified according to EUCAST (meropenem MIC > 0.12 mg/L with immunochromatography, colorimetric tests, carbapenem inactivation, or carbapenem hydrolysis with MALDI-TOF). Prevalence and incidence were calculated according to population denominators. Antibiotic susceptibility testing was performed using the microdilution method (EUCAST). All 403 isolates collected were sequenced for high-resolution single-nucleotide polymorphism (SNP) typing, core genome multilocus sequence typing (cgMLST), and resistome analysis. Results: In total, 377 (93.5%) CP-Kpn and 26 (6.5%) CP-Eco isolates were collected from 62 (87.3%) hospitals in 46 (92%) provinces. CP-Kpn was more prevalent in the blood (5.8%, 50/853) than in the urine (1.4%, 201/14,464). The cumulative incidence for both CP-Kpn and CP-Eco was 0.05 per 100 admitted patients. The main carbapenemase genes identified in CP-Kpn were bla OXA-48 (263/377), bla KPC-3 (62/377), bla VIM-1 (28/377), and bla NDM-1 (12/377). All isolates were susceptible to at least two antibiotics. Interregional dissemination of eight high-risk CP-Kpn clones was detected, mainly ST307/OXA-48 (16.4%), ST11/OXA-48 (16.4%), and ST512-ST258/KPC (13.8%). ST512/KPC and ST15/OXA-48 were the most frequent bacteremia-causative clones. The average number of acquired resistance genes was higher in CP-Kpn (7.9) than in CP-Eco (5.5). Conclusion: This study serves as a first step toward WGS integration in the surveillance of carbapenemase-producing Enterobacterales in Spain. We detected important epidemiological changes, including increased CP-Kpn and CP-Eco prevalence and incidence compared to previous studies, wide interregional dissemination, and increased dissemination of high-risk clones, such as ST307/OXA-48 and ST512/KPC-3

    Table_4_CARB-ES-19 Multicenter Study of Carbapenemase-Producing Klebsiella pneumoniae and Escherichia coli From All Spanish Provinces Reveals Interregional Spread of High-Risk Clones Such as ST307/OXA-48 and ST512/KPC-3.pdf

    Get PDF
    [Objectives] CARB-ES-19 is a comprehensive, multicenter, nationwide study integrating whole-genome sequencing (WGS) in the surveillance of carbapenemase-producing K. pneumoniae (CP-Kpn) and E. coli (CP-Eco) to determine their incidence, geographical distribution, phylogeny, and resistance mechanisms in Spain.[Methods] In total, 71 hospitals, representing all 50 Spanish provinces, collected the first 10 isolates per hospital (February to May 2019); CPE isolates were first identified according to EUCAST (meropenem MIC > 0.12 mg/L with immunochromatography, colorimetric tests, carbapenem inactivation, or carbapenem hydrolysis with MALDI-TOF). Prevalence and incidence were calculated according to population denominators. Antibiotic susceptibility testing was performed using the microdilution method (EUCAST). All 403 isolates collected were sequenced for high-resolution single-nucleotide polymorphism (SNP) typing, core genome multilocus sequence typing (cgMLST), and resistome analysis.[Results] In total, 377 (93.5%) CP-Kpn and 26 (6.5%) CP-Eco isolates were collected from 62 (87.3%) hospitals in 46 (92%) provinces. CP-Kpn was more prevalent in the blood (5.8%, 50/853) than in the urine (1.4%, 201/14,464). The cumulative incidence for both CP-Kpn and CP-Eco was 0.05 per 100 admitted patients. The main carbapenemase genes identified in CP-Kpn were blaOXA–48 (263/377), blaKPC–3 (62/377), blaVIM–1 (28/377), and blaNDM–1 (12/377). All isolates were susceptible to at least two antibiotics. Interregional dissemination of eight high-risk CP-Kpn clones was detected, mainly ST307/OXA-48 (16.4%), ST11/OXA-48 (16.4%), and ST512-ST258/KPC (13.8%). ST512/KPC and ST15/OXA-48 were the most frequent bacteremia-causative clones. The average number of acquired resistance genes was higher in CP-Kpn (7.9) than in CP-Eco (5.5).[Conclusion] This study serves as a first step toward WGS integration in the surveillance of carbapenemase-producing Enterobacterales in Spain. We detected important epidemiological changes, including increased CP-Kpn and CP-Eco prevalence and incidence compared to previous studies, wide interregional dissemination, and increased dissemination of high-risk clones, such as ST307/OXA-48 and ST512/KPC-3.Peer reviewe

    CARB-ES-19 Multicenter Study of Carbapenemase-Producing Klebsiella pneumoniae and Escherichia coli From All Spanish Provinces Reveals Interregional Spread of High-Risk Clones Such as ST307/OXA-48 and ST512/KPC-3

    Get PDF
    ObjectivesCARB-ES-19 is a comprehensive, multicenter, nationwide study integrating whole-genome sequencing (WGS) in the surveillance of carbapenemase-producing K. pneumoniae (CP-Kpn) and E. coli (CP-Eco) to determine their incidence, geographical distribution, phylogeny, and resistance mechanisms in Spain.MethodsIn total, 71 hospitals, representing all 50 Spanish provinces, collected the first 10 isolates per hospital (February to May 2019); CPE isolates were first identified according to EUCAST (meropenem MIC &gt; 0.12 mg/L with immunochromatography, colorimetric tests, carbapenem inactivation, or carbapenem hydrolysis with MALDI-TOF). Prevalence and incidence were calculated according to population denominators. Antibiotic susceptibility testing was performed using the microdilution method (EUCAST). All 403 isolates collected were sequenced for high-resolution single-nucleotide polymorphism (SNP) typing, core genome multilocus sequence typing (cgMLST), and resistome analysis.ResultsIn total, 377 (93.5%) CP-Kpn and 26 (6.5%) CP-Eco isolates were collected from 62 (87.3%) hospitals in 46 (92%) provinces. CP-Kpn was more prevalent in the blood (5.8%, 50/853) than in the urine (1.4%, 201/14,464). The cumulative incidence for both CP-Kpn and CP-Eco was 0.05 per 100 admitted patients. The main carbapenemase genes identified in CP-Kpn were blaOXA–48 (263/377), blaKPC–3 (62/377), blaVIM–1 (28/377), and blaNDM–1 (12/377). All isolates were susceptible to at least two antibiotics. Interregional dissemination of eight high-risk CP-Kpn clones was detected, mainly ST307/OXA-48 (16.4%), ST11/OXA-48 (16.4%), and ST512-ST258/KPC (13.8%). ST512/KPC and ST15/OXA-48 were the most frequent bacteremia-causative clones. The average number of acquired resistance genes was higher in CP-Kpn (7.9) than in CP-Eco (5.5).ConclusionThis study serves as a first step toward WGS integration in the surveillance of carbapenemase-producing Enterobacterales in Spain. We detected important epidemiological changes, including increased CP-Kpn and CP-Eco prevalence and incidence compared to previous studies, wide interregional dissemination, and increased dissemination of high-risk clones, such as ST307/OXA-48 and ST512/KPC-3
    corecore