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Abstract

Background: Chronic Chagas Disease (CD) diagnosis is based on serological methods employing crude,
semipurified or recombinant antigens, which may result in low sensitivity or cross-reactivity. To reduce these
restrictions, we developed a strategy involving use of molecules containing repetitive fragments of Trypanosoma
cruzi conserved proteins. Diagnostic performance of IBMP-8.1 and IBMP-8.4 chimeric antigens (Molecular Biology
Institute of Paraná - IBMP in Portuguese acronym) was assessed to diagnose T. cruzi-infected and non-infected
immigrants living in Barcelona (Spain), a non-endemic setting for Chagas disease.

Methods: Reactivity of IBMP-8.1 and IBMP-8.4 was assessed using an in-house automated ELISA with 347 positive
and 331 negative individuals to Chagas disease. Antigenic cross-reactivity was measured with sera samples from
pregnant women with Toxoplasma gondii (n = 98) and Zika virus (n = 75) antibodies.

Results: The area under the curve values was 1 and 0.99 for the IBMP-8.1 and IBMP-8.4 proteins, respectively,
demonstrating excellent diagnostic accuracy. The reactivity index was higher for IBMP-8.1 than IBMP-8.4 in positive
samples and no significant difference in reactivity index was observed in negative samples. Sensitivity ranged from
99.4% for IBMP-8.1 to 99.1% for IBMP-8.4 and was not statistically different. Specificity for IBMP-8.1 reached 100 and
99.7% for IBMP-8.4, both nearly 100% accurate. No antigenic cross-reactivity was observed and reactivity index was
similar to that for negative Chagas disease individuals.

Conclusions: Our results showed an outstanding performance of IBMP-8.1 and IBMP-8.4 chimeric antigens by ELISA
and suggest both chimeric antigens could also be used for Chagas disease diagnosis in immigrants living in non-
endemic settings.
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Background
Chagas disease (CD) is a life-threatening infection caused by
hemoflagellate protozoa Trypanosoma cruzi, generating an
estimated of 14,000 deaths every year [1] and morbidity in
5.7 to 9.4 million people in the continental Western Hemi-
sphere [2, 3]. The epidemiological pattern of CD has under-
gone substantial changes in last decades as a consequence of
control campaigns in endemic countries, which have re-
duced vectorial and transfusional transmission [4]. Increas-
ing international migration flows and more affordable
traveling conditions from Latin America to non-endemic
areas have contributed to epidemiology changes [5, 6]. CD
is no longer limited exclusively to the impoverished rural re-
gions of Latin America; it is transformed into a global health
concern affecting people worldwide in both endemic and
non-endemic countries and placing 100 million people at
risk for acquiring the infection [7].
In Spain, there are more than 6 million immigrants,

and more than 2 million (38%) are coming from CD en-
demic Latin America countries [8], posing CD as a pub-
lic health challenge [9]. Indeed, Ecuador, Bolivia, and
Argentina are the predominant areas of origin [7]. The
diversity of the geographic areas leads to another chal-
lenge: the need for an accurate diagnostic test capable of
identifying individuals infected with different T. cruzi
strains. The high genetic variability of T. cruzi can be re-
sponsible for false negative results [10]. These false nega-
tive results could be avoided by using synthetic chimeric
antigens with repetitive fragments of antigenic T. cruzi
proteins for the detection of specific antibodies [11–14].
We performed ELISA [15, 16] and liquid microarray

[17] to assess the potential diagnostic of four chimeric
proteins, IBMP-8.1, IBMP-8.2, IBMP-8.3, and IBMP-8.4,
to identify T. cruzi-infected individuals from several Bra-
zilian endemic (Bahia, Goiás, Minas Gerais, and Pernam-
buco states; Brazil) and non-endemic settings (Paraná
state; Brazil). These chimeric antigens were composed of
immunodominant and conserved sequences, as de-
scribed previously [15]. We obtained high-performance
values and low cross-reactivity to Leishmania spp., a
pathogen showing relatively high antigenic similarity to
T. cruzi [15, 17]. Imprecision analyses showed that IBMP
chimeric antigens are highly reproducible and IBMP-8.1
and IBMP-8.4 presented the highest performance values
among the evaluated antigens. In this study, we endeav-
ored to conduct an evaluation of the diagnostic perform-
ance of IBMP-8.1 and IBMP-8.4 chimeric antigens
employing ELISA to diagnose T. cruzi-infected and
non-infected immigrants living in Barcelona (Spain), a
non-endemic setting for the CD.

Methods
We used the methodology previously described by San-
tos et al. [18] and Brito et al. [19].

Study samples
We employed anonymized human sera from individuals
diagnosed at the Laboratory Clínic l’Hospitalet-Labora-
tori Clínic Territorial Metropolitana Sur, Catalan Insti-
tute of Health (Barcelona-Spain). The minimum sample
with a 95% confidence interval, an absolute expected
error of 1.1% and sensitivity of 99% was 315 sera from
non-infected and 315 from T. cruzi-infected individuals.
We included sera from 331 non-infected and 347 T. cru-
zi-infected Latin American individuals living in Barce-
lona (Fig. 1). The sample selection was based on
non-reactivity and reactivity by two serological assays:
ORTHO® T. cruzi ELISA Test System (Ortho Clinical
Diagnostics Inc., Raritan, USA), which employs T. cruzi
whole cell lysate antigen; and Bioelisa CHAGAS (Biokit
S.A., Barcelona, Spain) or BIO-FLASH® Chagas (auto-
mated chemiluminescent assay; Biokit S.A., Barcelona,
Spain), the two latter composed by recombinant T. cruzi
antigens. Samples with repeatedly discrepant results be-
tween both tests or inconclusive in one of them (or in gray
zone) were defined as serodiscordant. Each sample was
given an identifier code in the laboratory to ensure a
blinded analysis. Antigenic cross-reactivity was assessed
with sera samples from Latin American pregnant women
with Toxoplasma gondii (n = 98) and Zika virus (ZIKV)
antibodies (n = 75). Pregnant women sera samples
were employed in this study due to the availability of
the biological material in Laboratory Clínic l’Hospita-
let-Laboratori Clínic Territorial Metropolitana Sur
serum bank. Study participants were mostly from
Bolivia (97.3%), but there were individuals from other
CD endemic countries (Fig. 1).

Recombinant antigens
Proteins were expressed in Escherichia coli Bl21 star DE3
and purified from the soluble fraction of the total extract
of bacterial lysate. Both IBMP-8.1 and IBMP-8.4 antigens
were purified by IMAC resin first, and the best fractions
dialyzed for buffer exchange and salt reduction before fol-
lowing a second liquid chromatography step. The second
purification was conducted on ionic exchange and heparin
columns, respectively. Plasmidial construct has already
been described in Santos et al. [18].

Immunoassays
Assays were conducted according to previous reports
[14, 16]. Briefly, polystyrene “Maxisorp” 96-well micro-
plates (Nunc, Roskilde, Denmark) were coated with 25.0
ng of IBMP-8.1 and IBMP-8.4 per well diluted in coating
buffer (0.05M carbonate-bicarbonate, pH 9.6). Micro-
plates were blocked with Well Champion reagent
(Kem-En-Tec, Taastrup, Denmark) according to the man-
ufacturer’s instructions. Serum samples were diluted in
0.05M phosphate-buffered saline (pH 7.2)-0.5% Tween 20
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(PBS-T), and 100 μl was added to each well. After 60min
of incubation at 37 °C, microplates were washed in PBS-T
to remove unbound antibodies. HRP conjugated goat
anti-human IgG (Bio-Manguinhos, FIOCRUZ, Rio de
Janeiro, Brazil) was diluted 1:40,000 in PBS-T, and 100 μl
were then added to each well, and the microplates were
incubated for 30min at 37 °C. Wells were washed five
times and the immune complexes were revealed by the
addition of 100 μl TBM substrate (tetramethyl-benzidine;
Kem-En-Tec, Taastrup, Denmark). After a new cycle of in-
cubation (10min at RT in the dark), the reaction was
stopped by adding 50 μl 5 N H2SO4, and the absorbance
was measured at 450 nm. The protocols were automatized
and the runs carried out in an automated microplate
immunoanalyser (BEST 2000®, Biokit, Werfen Group Bar-
celona, Spain). The blank readings (buffer dilution) was
subtracted from all other values.

Statistical analysis
Data were coded and entered using computer graphic
software (GraphPad Software Inc., La Jolla, CA, USA).
Descriptive data were presented in the form of geomet-
ric means ± standard deviation. Shapiro-Wilk test,
followed by Student’s t-test, was used to test data nor-
mality. When assumed homogeneity was not confirmed,
Wilcoxon’s signed rank test was adopted. Cut-off values
were determined under the receiver operating character-
istic curve (ROC) analyzing the whole serum panel. For
data normalization, all results were expressed by plotting
values in an indexed format, calculated as the ratio be-
tween a given sample’s optical density (OD) and the
cut-off OD values respective to each assay. Under this
index, referred to as a reactivity index (RI), all results
≥1.00 were considered positive. When a sample’s RI value
was 1.0 ± 10%, the result was considered as indeterminate
(i.e., in the grey zone), and these samples were deemed in-
conclusive. The test performances were computed using a
dichotomous approach and compared regarding sensitiv-
ity, specificity, and accuracy [20]. Confidence interval was

set to 95% and p < 0.05 was considered as statistically sig-
nificant. A study workflow (Fig. 2) is provided according
to the STARD guidelines [21]. Digital map (Fig. 1) was ac-
quired from the Brazilian Institute of Geography and Sta-
tistics (IBGE) cartographic database in shapefile (.shp),
which were formatted and analyzed using TerraView ver-
sion 4.2, public-access software provided by the National
Institute for Space Research from Brazil (www.dpi.inpe.br/
terraview).

Results
Diagnostic performance
The reactivity index and assay performance parameters
found for the IBMP-8.1 and IBMP-8.4 chimeric antigens
are illustrated in Fig. 3. Based on 678 samples from
non-infected and T. cruzi-infected individuals, the AUC
(area under the curve) values were 1.000 and 0.9998 for
IBMP-8.1 and IBMP-8.4 proteins, respectively, demon-
strating excellent overall diagnostic accuracy. The
IBMP-8.1 chimera yielded the highest diagnostic accur-
acy among T. cruzi-infected individuals, and no signifi-
cant difference was observed between chimeric antigens
in non-infected individuals. Sensitivity was 99.4% for
IBMP-8.1 and 99.1% for IBMP-8.4. Only one positive
sample was simultaneously false negative when assayed
by IBMP-8.1 and IBMP-8.4 chimeric antigens. Specificity
of IBMP-8.1 achieved 100 and 99.7% for IBMP-8.4. Both
proteins showed an accuracy of nearly 100%. No statisti-
cally significant differences in sensitivity or specificity
scores were found between the chimeric antigens. Using
RI values of 1.0 ± 0.10 as the grey zone inconclusive
interval, we observed two positive and one negative sam-
ple fell in the inconclusive space using IBMP-8.1 while
two positive samples to IBMP-8.4 presented similar be-
havior. Overall, the number of inconclusive results was
0.44% for IBMP-8.1 and 0.29% for IBMP-8.4 (Fig. 3). No
sample fell concomitantly inside the grey zone for
IBMP-8.1 and IBMP8.4 chimeric antigens.

Fig. 1 T. cruzi-positive and negative samples selected from Latin American immigrants living in Barcelona-Spain
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Fig. 2 Study workflow for testing IBMP T. cruzi chimeras. RI, reactivity index; ZIKV, Zika virus

Fig. 3 Reactivity index (RI) was obtained with serum from non-infected and T. cruzi-infected immigrants living in Barcelona-Spain. The cut-off
value is RI = 1.0 and the grey zone is RI = 1.0 ± 0.10. Lines and whiskers represent geometric means (± 95% CI). AUC, area under curve; GZ, grey
zone; Sen, sensitivity; Spe, specificity; Acc; accuracy
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Antigenic cross-reactivity
The RI values for sampled with T. gondii and ZIKV anti-
bodies were identical to that found for non-infected in-
dividuals, indicating extremely low reactivity. No
false-positive or inconclusive samples were found with
IBMP chimeric antigens (Fig. 4).

Discussion
Diagnosis of chronic CD is not a simple task due to the
high genetic diversity of T. cruzi, which might lead to mis-
diagnosis [22]. In fact, T. cruzi parasite has remarkable
genetic heterogeneity, it is classified into seven evolution-
ary genetic groups or discrete typing units (DTUs) termed
TcI-TcVI and TcBat, with sub-classifications for regional
strains [22–24]. Regional differences in sensitivity of sero-
logical tests had been reported, leading to negative CD
diagnosis, mostly in non-endemic countries that receive
immigrants from several endemic areas [25–28]. There-
fore, a serological test should be able to diagnose CD re-
gardless of the T. cruzi antigenic heterogeneity. The main
benefit in the use of chimeric antigens as antigenic matrix
is the increased repertoire of epitopes in comparison to
non-chimeric recombinant antigens, reducing the number
of false negative results. In previous studies, our group an-
alyzed the IBMP performance to diagnose T. cruzi-in-
fected individuals in several endemic and non-endemic
geographical areas from Brazil [14, 15], a country where
TcII is predominant [10]. Here, we used two chimeric an-
tigens to capture specific anti-T. cruzi antibodies in the
sera of Latin American immigrants living in Barcelona/
Spain, a non-endemic setting for CD. The majority of
CD-positive samples were collected from Bolivian immi-
grants, where TcV is the most common DTU found in
Bolivia [10] and predominates in Bolivian immigrants liv-
ing in Barcelona [29]. Based on the result from previous
studies, we suggest that IBMP-8.1 and IBMP-8.4 antigens

are able to diagnose chronic Chagas disease in areas with
predominance of TcII and TcV genetic groups.
The assays exhibited high diagnostic accuracy values

as demonstrated by AUC (nearly 100%), indicating a
substantial discriminative power between negative and
chronic CD-positive samples. Similar results were previ-
ously found in samples from several Brazilian settings
both by ELISA (AUC > 99.7%) [14] and liquid microarray
(AUC > 99.1%) [17]. Moreover, the reactivity index from
IBMP-8.1 and IBMP-8.4 chimeric antigens, achieved
from immigrants living in a non-endemic setting with
CD, was higher than those previously obtained for Bra-
zilian samples [14]. It is interesting to note that no dif-
ferences were observed concerning negative samples.
Further studies need to evaluate the performance of the
chimeric antigens in settings where other DTUs are pre-
dominant, i.e., Argentina, Mexico and Costa Rica.
The present study showed high sensitivity and specifi-

city for both IBMP-8.1 and IBMP-8.4, similar to those
found previously using Brazilian samples [14, 15]. Also,
the chimeric antigens were found to be nearly 100% ac-
curate, suggesting that the number of misdiagnoses was
negligible. In fact, only two and three CD-positive sam-
ples were misclassified when assayed with IBMP-8.1 and
IBMP-8.4, respectively. In previous studies we evaluated
the increase of sensitivity values and the RI signal using
a multiplex methodology [17] or the equimolar mixture
of the antigens [15], however no gains of were achieved.
Hence, we believe that the lack of reactivity from these
samples could be due to host immunological reasons or
low levels of antibodies on the sera. In CD-negative sam-
ples, only one sample was classified as false-positive by
IBMP-8.4 antigen. Although this sample presented low
signal to IBMP-8.4 (1.28), it was classified as negative
when assayed by commercial tests (RI < 0.25) and by the
IBMP-8.1 chimera (0.22).

Fig. 4 Analysis of the cross-reactivity of the IBMP-8.1 and IBMP-8.4 chimeras to sera with Toxoplasma gondii antibodies (n = 98) and Zika virus
antibodies (n = 75). The cut-off value is 1.0 and the grey zone is RI = 1.0 ± 0.10. Lines and whiskers represent geometric means (± 95% CI). GZ,
grey zone; RI, reactivity index; ZIKV, Zika virus

Dopico et al. BMC Infectious Diseases          (2019) 19:251 Page 5 of 7



No cross-reactivity of IBMP chimeric antigens against
antibodies of T. gondii and ZIKV was observed. Indeed,
previous studies have shown extremely low reactivity of
IBMP chimeric antigens for several infectious diseases,
even for Leishmania spp. [15, 17], a pathogen phylogen-
etically similar to T. cruzi. T. gondii and ZIKV positive
samples were used in this study due to serum bank avail-
ability and because these infectious diseases did not
assay before using IBMP proteins.

Conclusion
Our results showed a remarkable performance of
IBMP-8.1 and IBMP-8.4 chimeric antigens by ELISA
and suggest both antigens could also be used for CD
diagnosis in immigrants living in non-endemic settings.
The high accuracy of IBMP-8.1 and IBMP-8.4 chimeric
antigens suggests that they are useful for CD diagnosis
in individuals infected with other DTUs.
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