99 research outputs found

    Entropy-driven phase transition in a polydisperse hard-rods lattice system

    Full text link
    We study a system of rods on the 2d square lattice, with hard-core exclusion. Each rod has a length between 2 and N. We show that, when N is sufficiently large, and for suitable fugacity, there are several distinct Gibbs states, with orientational long-range order. This is in sharp contrast with the case N=2 (the monomer-dimer model), for which Heilmann and Lieb proved absence of phase transition at any fugacity. This is the first example of a pure hard-core system with phases displaying orientational order, but not translational order; this is a fundamental characteristic feature of liquid crystals

    General Theory of Lee-Yang Zeros in Models with First-Order Phase Transitions

    Full text link
    We present a general, rigorous theory of Lee-Yang zeros for models with first-order phase transitions that admit convergent contour expansions. We derive formulas for the positions and the density of the zeros. In particular, we show that for models without symmetry, the curves on which the zeros lie are generically not circles, and can have topologically nontrivial features, such as bifurcation. Our results are illustrated in three models in a complex field: the low-temperature Ising and Blume-Capel models, and the qq-state Potts model for qq large enough.Comment: 4 pgs, 2 figs, to appear in Phys. Rev. Let

    Mean-field driven first-order phase transitions in systems with long-range interactions

    Full text link
    We consider a class of spin systems on Zd\Z^d with vector valued spins (\bS_x) that interact via the pair-potentials J_{x,y} \bS_x\cdot\bS_y. The interactions are generally spread-out in the sense that the Jx,yJ_{x,y}'s exhibit either exponential or power-law fall-off. Under the technical condition of reflection positivity and for sufficiently spread out interactions, we prove that the model exhibits a first-order phase transition whenever the associated mean-field theory signals such a transition. As a consequence, e.g., in dimensions d3d\ge3, we can finally provide examples of the 3-state Potts model with spread-out, exponentially decaying interactions, which undergoes a first-order phase transition as the temperature varies. Similar transitions are established in dimensions d=1,2d=1,2 for power-law decaying interactions and in high dimensions for next-nearest neighbor couplings. In addition, we also investigate the limit of infinitely spread-out interactions. Specifically, we show that once the mean-field theory is in a unique ``state,'' then in any sequence of translation-invariant Gibbs states various observables converge to their mean-field values and the states themselves converge to a product measure.Comment: 57 pages; uses a (modified) jstatphys class fil

    Band structure of CuMnAs probed by optical and photoemission spectroscopy

    Get PDF
    The tetragonal phase of CuMnAs progressively appears as one of the key materials for antiferromagnetic spintronics due to efficient current-induced spin-torques whose existence can be directly inferred from crystal symmetry. Theoretical understanding of spintronic phenomena in this material, however, relies on the detailed knowledge of electronic structure (band structure and corresponding wave functions) which has so far been tested only to a limited extent. We show that AC permittivity (obtained from ellipsometry) and UV photoelectron spectra agree with density functional calculations. Together with the x-ray diffraction and precession electron diffraction tomography, our analysis confirms recent theoretical claim [Phys. Rev. B 96, 094406 (2017)] that copper atoms occupy lattice positions in the basal plane of the tetragonal unit cell

    On the Gibbs states of the noncritical Potts model on Z^2

    Full text link
    We prove that all Gibbs states of the q-state nearest neighbor Potts model on Z^2 below the critical temperature are convex combinations of the q pure phases; in particular, they are all translation invariant. To achieve this goal, we consider such models in large finite boxes with arbitrary boundary condition, and prove that the center of the box lies deeply inside a pure phase with high probability. Our estimate of the finite-volume error term is of essentially optimal order, which stems from the Brownian scaling of fluctuating interfaces. The results hold at any supercritical value of the inverse temperature.Comment: Minor typos corrected after proofreading. Final version, to appear in Probab. Theory Relat. Field

    SARS-CoV-2 variants, spike mutations and immune escape.

    Get PDF
    Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect functional properties and may alter infectivity, disease severity or interactions with host immunity. The emergence of SARS-CoV-2 in late 2019 was followed by a period of relative evolutionary stasis lasting about 11 months. Since late 2020, however, SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations, in the context of 'variants of concern', that impact virus characteristics, including transmissibility and antigenicity, probably in response to the changing immune profile of the human population. There is emerging evidence of reduced neutralization of some SARS-CoV-2 variants by postvaccination serum; however, a greater understanding of correlates of protection is required to evaluate how this may impact vaccine effectiveness. Nonetheless, manufacturers are preparing platforms for a possible update of vaccine sequences, and it is crucial that surveillance of genetic and antigenic changes in the global virus population is done alongside experiments to elucidate the phenotypic impacts of mutations. In this Review, we summarize the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets

    SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses

    Get PDF
    On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses
    corecore