113 research outputs found
Aggregation and fragmentation dynamics of inertial particles in chaotic flows
Inertial particles advected in chaotic flows often accumulate in strange
attractors. While moving in these fractal sets they usually approach each other
and collide. Here we consider inertial particles aggregating upon collision.
The new particles formed in this process are larger and follow the equation of
motion with a new parameter. These particles can in turn fragment when they
reach a certain size or shear forces become sufficiently large. The resulting
system consists of a large set of coexisting dynamical systems with a varying
number of particles. We find that the combination of aggregation and
fragmentation leads to an asymptotic steady state. The asymptotic particle size
distribution depends on the mechanism of fragmentation. The size distributions
resulting from this model are consistent with those found in rain drop
statistics and in stirring tank experiments.Comment: 4 pages, 4 figure
Low energy measurement of the 7Be(p,gamma)8B cross section
We have measured the cross section of the 7Be(p,gamma)8B reaction for E_cm =
185.8 keV, 134.7 keV and 111.7 keV using a radioactive 7Be target (132 mCi).
Single and coincidence spectra of beta^+ and alpha particles from 8B and 8Be^*
decay, respectively, were measured using a large acceptance spectrometer. The
zero energy S factor inferred from these data is 18.5 +/- 2.4 eV b and a
weighted mean value of 18.8 +/- 1.7 eV b (theoretical uncertainty included) is
deduced when combining this value with our previous results at higher energies.Comment: Accepted for publication in Phys. Rev. Let
Fusion rate enhancement due to energy spread of colliding nuclei
Experimental results for sub-barrier nuclear fusion reactions show cross
section enhancements with respect to bare nuclei which are generally larger
than those expected according to electron screening calculations. We point out
that energy spread of target or projectile nuclei is a mechanism which
generally provides fusion enhancement. We present a general formula for
calculating the enhancement factor and we provide quantitative estimate for
effects due to thermal motion, vibrations inside atomic, molecular or crystal
system, and due to finite beam energy width. All these effects are marginal at
the energies which are presently measurable, however they have to be considered
in future experiments at still lower energies. This study allows to exclude
several effects as possible explanation of the observed anomalous fusion
enhancements, which remain a mistery.Comment: 17 pages with 3 ps figure included. Revtex styl
Status of the LUNA experiment
Luna is a pilot project initially focused on the 3He(3He, 2p)4He cross section measurement within the thermal energy region of the Sun (15–27 keV). A compact high current 50 kV ion accelerator facility including a windowless gas target system, a beam calorimeter and four detector telescopes has been built, tested and installed underground at Laboratori Nazionali del Gran Sasso. In these conditions, thanks to the cosmic ray suppression, we could attain a background level of less than 1 event per week, a rate similar to the one expected from 3He(3He, 2p)4He at the lower edge of the Sun thermal energy region
Short-term changes in nightlife attendance and patron intoxication following alcohol restrictions in Queensland, Australia
Background: This study aims to explore short-term changes following the introduction of alcohol restrictions (most notably 2 am to 3 am last drinks). We examined patterns of nightlife attendance, intoxication, and alcohol use among patrons shortly before and after restrictions were introduced in Fortitude Valley, Brisbane: the largest nighttime entertainment precinct of Queensland. Methods: Street-intercept patron interviews were conducted in Fortitude Valley in June (n = 497) and July (n = 562) 2016. A pre-post design was used to assess changes in time spent out drinking/partying prior to the interview, time of arrival in the precinct, pre-drinking, and blood alcohol concentration (BAC). Results: Regression models indicated that after the policy introduction, the proportion of people arriving at Fortitude Valley before 10:00 pm increased (OR = 1.38; 95% CI = 1.04, 1.82). Participants reported going out, on average, one hour earlier after the intervention (β = − 0.17; 95% CI = 0.11, 0.22). There was a decrease (RRR = 0.58; 95% CI = 0.43, 0.79) in the proportion of participants who had a high level of intoxication (BAC ≥0.10 g/dL) postintervention. No other significant differences were found. Conclusions: Earlier cessation of alcohol sales and stopping the sale of rapid intoxication drinks after midnight was associated with people arriving in Fortitude Valley earlier. Though legislative loopholes allowed some venues to continue trading to 5 am, the proportion of people in the precinct who were highly intoxicated decreased after the restriction. Further measurement will be required to determine whether the reduction has persisted
Coagulation and fragmentation dynamics of inertial particles
Inertial particles suspended in many natural and industrial flows undergo
coagulation upon collisions and fragmentation if their size becomes too large
or if they experience large shear. Here we study this coagulation-fragmentation
process in time-periodic incompressible flows. We find that this process
approaches an asymptotic, dynamical steady state where the average number of
particles of each size is roughly constant. We compare the steady-state size
distributions corresponding to two fragmentation mechanisms and for different
flows and find that the steady state is mostly independent of the coagulation
process. While collision rates determine the transient behavior, fragmentation
determines the steady state. For example, for fragmentation due to shear, flows
that have very different local particle concentrations can result in similar
particle size distributions if the temporal or spatial variation of shear
forces is similar.Comment: 8 pages, 7 figure
Alterations of immune response of non-small lung cancer with azacytidine
Innovative therapies are needed for advanced Non-Small Cell Lung Cancer (NSCLC). We have undertaken a genomics based, hypothesis driving, approach to query an emerging potential that epigenetic therapy may sensitize to immune checkpoint therapy targeting PD-L1/PD-1 interaction. NSCLC cell lines were treated with the DNA hypomethylating agent azacytidine (AZA - Vidaza) and genes and pathways altered were mapped by genome-wide expression and DNA methylation analyses. AZA-induced pathways were analyzed in The Cancer Genome Atlas (TCGA) project by mapping the derived gene signatures in hundreds of lung adeno (LUAD) and squamous cell carcinoma (LUSC) samples. AZA up-regulates genes and pathways related to both innate and adaptive immunity and genes related to immune evasion in a several NSCLC lines. DNA hypermethylation and low expression of IRF7, an interferon transcription factor, tracks with this signature particularly in LUSC. In concert with these events, AZA up-regulates PD-L1 transcripts and protein, a key ligand-mediator of immune tolerance. Analysis of TCGA samples demonstrates that a significant proportion of primary NSCLC have low expression of AZA-induced immune genes, including PD-L1. We hypothesize that epigenetic therapy combined with blockade of immune checkpoints - in particular the PD-1/PD-L1 pathway - may augment response of NSCLC by shifting the balance between immune activation and immune inhibition, particularly in a subset of NSCLC with low expression of these pathways. Our studies define a biomarker strategy for response in a recently initiated trial to examine the potential of epigenetic therapy to sensitize patients with NSCLC to PD-1 immune checkpoint blockade
The Cross Section of 3He(3He,2p)4He measured at Solar Energies
We report on the results of the \hethet\ experiment at the underground
accelerator facility LUNA (Gran Sasso). For the first time the lowest
projectile energies utilized for the cross section measurement correspond to
energies below the center of the solar Gamow peak (=22 keV). The
data provide no evidence for the existence of a hypothetical resonance in the
energy range investigated. Although no extrapolation is needed anymore (except
for energies at the low-energy tail of the Gamow peak), the data must be
corrected for the effects of electron screening, clearly observed the first
time for the \hethet\ reaction. The effects are however larger than expected
and not understood, leading presently to the largest uncertainty on the quoted
value for bare nuclides (=5.40 MeV b).Comment: 18 pages, 10 postscript figures, Calculations concerning hypothetical
resonanz added, Submitted to Phys. Rev. C., available at this URL:
HTTP://www.lngs.infn.it/lngs/htexts/luna/luna.htm
Nuclear Reaction Network for Primordial Nucleosynthesis: a detailed analysis of rates, uncertainties and light nuclei yields
We analyze in details the standard Primordial Nucleosynthesis scenario. In
particular we discuss the key theoretical issues which are involved in a
detailed prediction of light nuclide abundances, as the weak reaction rates,
neutrino decoupling and nuclear rate modeling. We also perform a new analysis
of available data on the main nuclear processes entering the nucleosynthesis
reaction network, with particular stress on their uncertainties as well as on
their role in determining the corresponding uncertainties on light nuclide
theoretical estimates. The current status of theoretical versus experimental
results for 2H, 3He, 4He and 7Li is then discussed using the determination of
the baryon density as obtained from Cosmic Microwave Background anisotropies.Comment: LaTeX, 83 pages, 30 .pdf figures. Some typos in the units of
R-functions in appendix D and relative plots fixe
- …