159 research outputs found

    The importance of climate risks for institutional investors

    Full text link
    According to our survey about climate risk perceptions, institutional investors believe climate risks have financial implications for their portfolio firms and that these risks, particularly regulatory risks, already have begun to materialize. Many of the investors, especially the long-term, larger, and ESG-oriented ones, consider risk management and engagement, rather than divestment, to be the better approach for addressing climate risks. Although surveyed investors believe that some equity valuations do not fully reflect climate risks, their perceived overvaluations are not large

    An R-Package for the Deconvolution and Integration of 1D NMR Data: MetaboDecon1D

    Get PDF
    NMR spectroscopy is a widely used method for the detection and quantification of metabolites in complex biological fluids. However, the large number of metabolites present in a biological sample such as urine or plasma leads to considerable signal overlap in one-dimensional NMR spectra, which in turn hampers both signal identification and quantification. As a consequence, we have developed an easy to use R-package that allows the fully automated deconvolution of overlapping signals in the underlying Lorentzian line-shapes. We show that precise integral values are computed, which are required to obtain both relative and absolute quantitative information. The algorithm is independent of any knowledge of the corresponding metabolites, which also allows the quantitative description of features of yet unknown identity

    The structure and oxidation of the eye lens chaperone αA-crystallin

    Get PDF
    The small heat shock protein αA-crystallin is a molecular chaperone important for the optical properties of the vertebrate eye lens. It forms heterogeneous oligomeric ensembles. We determined the structures of human αA-crystallin oligomers by combining cryo-electron microscopy, cross-linking/mass spectrometry, NMR spectroscopy and molecular modeling. The different oligomers can be interconverted by the addition or subtraction of tetramers, leading to mainly 12-, 16- and 20-meric assemblies in which interactions between N-terminal regions are important. Cross-dimer domain-swapping of the C-terminal region is a determinant of αA-crystallin heterogeneity. Human αA-crystallin contains two cysteines, which can form an intramolecular disulfide in vivo. Oxidation in vitro requires conformational changes and oligomer dissociation. The oxidized oligomers, which are larger than reduced αA-crystallin and destabilized against unfolding, are active chaperones and can transfer the disulfide to destabilized substrate proteins. The insight into the structure and function of αA-crystallin provides a basis for understanding its role in the eye lens

    Altered fibrin clot structure and dysregulated fibrinolysis contribute to thrombosis risk in severe COVID-19

    Full text link
    The high incidence of thrombotic events suggests a possible role of the contact system pathway in COVID-19 pathology. Here, we demonstrate altered levels of factor XII (FXII) and its activation products in critically ill COVID-19 patients in comparison to patients with severe acute respiratory distress syndrome due to influenza virus (ARDS-influenza). Compatible with this data, we report rapid consumption of FXII in COVID-19, but not in ARDS-influenza, plasma. Interestingly, the lag phase in fibrin formation, triggered by the FXII activator kaolin, was not prolonged in COVID-19 as opposed to ARDS-influenza. Using confocal and electron microscopy, we showed that increased FXII activation rate, in conjunction with elevated fibrinogen levels, triggers formation of fibrinolysis-resistant, compact clots with thin fibers and small pores in COVID-19. Accordingly, clot lysis was markedly impaired in COVID-19 as opposed to ARDS-infleunza subjects. Dysregulatated fibrinolytic system, as evidenced by elevated levels of thrombin-activatable fibrinolysis inhibitor, tissue-plasminogen activator, and plasminogen activator inhibitor-1 in COVID-19 potentiated this effect. Analysis of lung tissue sections revealed wide-spread extra- and intra-vascular compact fibrin deposits in COVID-19 patients. Together, compact fibrin network structure and dysregulated fibrinolysis may collectively contribute to high incidence of thrombotic events in COVID-19

    Resilience and Protection of Health Care and Research Laboratory Workers During the SARS-CoV-2 Pandemic: Analysis and Case Study From an Austrian High Security Laboratory

    Get PDF
    The SARS-CoV-2 pandemic has highlighted the interdependency of healthcare systems and research organizations on manufacturers and suppliers of personnel protective equipment (PPE) and the need for well-trained personnel who can react quickly to changing working conditions. Reports on challenges faced by research laboratory workers (RLWs) are rare in contrast to the lived experience of hospital health care workers. We report on experiences gained by RLWs (e.g., molecular scientists, pathologists, autopsy assistants) who significantly contributed to combating the pandemic under particularly challenging conditions due to increased workload, sickness and interrupted PPE supply chains. RLWs perform a broad spectrum of work with SARS-CoV-2 such as autopsies, establishment of virus cultures and infection models, development and verification of diagnostics, performance of virus inactivation assays to investigate various antiviral agents including vaccines and evaluation of decontamination technologies in high containment biological laboratories (HCBL). Performance of autopsies and laboratory work increased substantially during the pandemic and thus led to highly demanding working conditions with working shifts of more than eight hours working in PPE that stressed individual limits and also the ergonomic and safety limits of PPE. We provide detailed insights into the challenges of the stressful daily laboratory routine since the pandemic began, lessons learned, and suggest solutions for better safety based on a case study of a newly established HCBL (i.e., BSL-3 laboratory) designed for autopsies and research laboratory work. Reduced personal risk, increased resilience, and stress resistance can be achieved by improved PPE components, better training, redundant safety measures, inculcating a culture of safety, and excellent teamwor

    Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    Get PDF
    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange

    The ScaleX campaign: scale-crossing land-surface and boundary layer processes in the TERENO-preAlpine observatory

    Get PDF
    Augmenting long-term ecosystem-atmosphere observations with multidisciplinary intensive campaigns aims at closing gaps in spatial and temporal scales of observation for energy- and biogeochemical cycling, and at stimulating collaborative research. ScaleX is a collaborative measurement campaign, co-located with a long-term environmental observatory of the German TERENO (TERrestrial ENvironmental Observatories) network in mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land-surface atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated on a small number of locations
    corecore