569 research outputs found
Magnetism and Charge Dynamics in Iron Pnictides
In a wide variety of materials, such as copper oxides, heavy fermions,
organic salts, and the recently discovered iron pnictides, superconductivity is
found in close proximity to a magnetically ordered state. The character of the
proximate magnetic phase is thus believed to be crucial for understanding the
differences between the various families of unconventional superconductors and
the mechanism of superconductivity. Unlike the AFM order in cuprates, the
nature of the magnetism and of the underlying electronic state in the iron
pnictide superconductors is not well understood. Neither density functional
theory nor models based on atomic physics and superexchange, account for the
small size of the magnetic moment. Many low energy probes such as transport,
STM and ARPES measured strong anisotropy of the electronic states akin to the
nematic order in a liquid crystal, but there is no consensus on its physical
origin, and a three dimensional picture of electronic states and its relations
to the optical conductivity in the magnetic state is lacking. Using a first
principles approach, we obtained the experimentally observed magnetic moment,
optical conductivity, and the anisotropy of the electronic states. The theory
connects ARPES, which measures one particle electronic states, optical
spectroscopy, probing the particle hole excitations of the solid and neutron
scattering which measures the magnetic moment. We predict a manifestation of
the anisotropy in the optical conductivity, and we show that the magnetic phase
arises from the paramagnetic phase by a large gain of the Hund's rule coupling
energy and a smaller loss of kinetic energy, indicating that iron pnictides
represent a new class of compounds where the nature of magnetism is
intermediate between the spin density wave of almost independent particles, and
the antiferromagnetic state of local moments.Comment: 4+ pages with additional one-page supplementary materia
Recommended from our members
Insolation triggered abrupt weakening of Atlantic circulation at the end of interglacials.
Abrupt cooling is observed at the end of interglacials in many paleoclimate records, but the mechanism responsible remains unclear. Using model simulations, we demonstrate that there exists a threshold in the level of astronomically induced insolation below which abrupt changes at the end of interglacials of the past 800,000 years occur. When decreasing insolation reaches the critical value, it triggers a strong, abrupt weakening of the Atlantic meridional overturning circulation and a cooler mean climate state accompanied by high-amplitude variations lasting for several thousand years. The mechanism involves sea ice feedbacks in the Nordic and Labrador Seas. The ubiquity of this threshold suggests its fundamental role in terminating the warm climate conditions at the end of interglacials
Rapid detection of adulterated drugs in herbal dietary supplements by wooden-tip electrospray ionization mass spectrometry
Version of RecordPublishe
Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides
The iron pnictide and chalcogenide compounds are a subject of intensive
investigations due to their high temperature superconductivity.\cite{a-LaFeAsO}
They all share the same structure, but there is significant variation in their
physical properties, such as magnetic ordered moments, effective masses,
superconducting gaps and T. Many theoretical techniques have been applied
to individual compounds but no consistent description of the trends is
available \cite{np-review}. We carry out a comparative theoretical study of a
large number of iron-based compounds in both their magnetic and paramagnetic
states. We show that the nature of both states is well described by our method
and the trends in all the calculated physical properties such as the ordered
moments, effective masses and Fermi surfaces are in good agreement with
experiments across the compounds. The variation of these properties can be
traced to variations in the key structural parameters, rather than changes in
the screening of the Coulomb interactions. Our results provide a natural
explanation of the strongly Fermi surface dependent superconducting gaps
observed in experiments\cite{Ding}. We propose a specific optimization of the
crystal structure to look for higher T superconductors.Comment: 5 pages, 3 figures with a 5-page supplementary materia
Optimisation of substrate angles for multi-material and multi-functional inkjet printing
Three dimensional inkjet printing of multiple materials for electronics applications are challenging due to the limited material availability, inconsistencies in layer thickness between dissimilar materials and the need to expose the printed tracks of metal nanoparticles to temperature above 100 °C for sintering. It is envisaged that instead of printing a dielectric and a conductive material on the same plane, by printing conductive tracks on an angled dielectric surface, the required number of silver layers and consequently, the exposure of the polymer to high temperature and the build time of the component can be significantly reduced. Conductive tracks printed with a fixed print height (FH) showed significantly better resolution for all angles than the fixed slope (FS) sample where the print height varied to maintain the slope length. The electrical resistance of the tracks remained under 10Ω up to 60° for FH; whereas for the FS samples, the resistance remained under 10Ω for samples up to 45°. Thus by fixing the print height to 4 mm, precise tracks with low resistance can be printed at substrate angles up to 60°. By adopting this approach, the build height “Z” can be quickly attained with less exposure of the polymer to high temperature
Consistent model of magnetism in ferropnictides
The discovery of superconductivity in LaFeAsO introduced the ferropnictides
as a major new class of superconducting compounds with critical temperatures
second only to cuprates. The presence of magnetic iron makes ferropnictides
radically different from cuprates. Antiferromagnetism of the parent compounds
strongly suggests that superconductivity and magnetism are closely related.
However, the character of magnetic interactions and spin fluctuations in
ferropnictides, in spite of vigorous efforts, has until now resisted
understanding within any conventional model of magnetism. Here we show that the
most puzzling features can be naturally reconciled within a rather simple
effective spin model with biquadratic interactions, which is consistent with
electronic structure calculations. By going beyond the Heisenberg model, this
description explains numerous experimentally observed properties, including the
peculiarities of the spin wave spectrum, thin domain walls, crossover from
first to second order phase transition under doping in some compounds, and
offers new insight in the occurrence of the nematic phase above the
antiferromagnetic phase transition.Comment: 5 pages, 3 figures, revtex
Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity
We use neutron scattering to study the structural and magnetic phase
transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a
semimetal to a high-transition-temperature (high-Tc) superconductor through
Fluorine (F) doping x. In the undoped state, CeFeAsO develops a structural
lattice distortion followed by a stripe like commensurate antiferromagnetic
order with decreasing temperature. With increasing Fluorine doping, the
structural phase transition decreases gradually while the antiferromagnetic
order is suppressed before the appearance of superconductivity, resulting an
electronic phase diagram remarkably similar to that of the high-Tc copper
oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other
Fe-based superconductors reveals that the effective electronic band width
decreases systematically for materials with higher Tc. The results suggest that
electron correlation effects are important for the mechanism of high-Tc
superconductivity in these Fe pnictides.Comment: 19 pages, 5 figure
Satellites and large doping- and temperature-dependence of electronic properties in hole-doped BaFe2As2
Over the last years, superconductivity has been discovered in several
families of iron-based compounds. Despite intense research, even basic
electronic properties of these materials, such as Fermi surfaces, effective
electron masses, or orbital characters are still subject to debate. Here, we
address an issue that has not been considered before, namely the consequences
of dynamical screening of the Coulomb interactions among Fe-d electrons. We
demonstrate its importance not only for correlation satellites seen in
photoemission spectroscopy, but also for the low-energy electronic structure.
From our analysis of the normal phase of BaFe2As2 emerges the picture of a
strongly correlated compound with strongly doping- and temperature-dependent
properties. In the hole overdoped regime, an incoherent metal is found, while
Fermi-liquid behavior is recovered in the undoped compound. At optimal doping,
the self-energy exhibits an unusual square-root energy dependence which leads
to strong band renormalizations near the Fermi level
Proximity of Iron Pnictide Superconductors to a Quantum Tricritical Point
We determine the nature of the magnetic quantum critical point in the doped
LaFeAsO using a set of constrained density functional calculations that provide
ab initio coefficients for a Landau order parameter analysis. The system turns
out to be remarkably close to a quantum tricritical point, where the nature of
the phase transition changes from first to second order. We compare with the
effective field theory and discuss the experimental consequences.Comment: 4 pages, 4 figure
Thermopower of the Correlated Narrow Gap Semiconductor FeSi and Comparison to RuSi
Iron based narrow gap semiconductors such as FeSi, FeSb2, or FeGa3 have
received a lot of attention because they exhibit a large thermopower, as well
as striking similarities to heavy fermion Kondo insulators. Many proposals have
been advanced, however, lacking quantitative methodologies applied to this
problem, a consensus remained elusive to date. Here, we employ realistic
many-body calculations to elucidate the impact of electronic correlation
effects on FeSi. Our methodology accounts for all substantial anomalies
observed in FeSi: the metallization, the lack of conservation of spectral
weight in optical spectroscopy, and the Curie susceptibility. In particular we
find a very good agreement for the anomalous thermoelectric power. Validated by
this congruence with experiment, we further discuss a new physical picture of
the microscopic nature of the insulator-to-metal crossover. Indeed, we find the
suppression of the Seebeck coefficient to be driven by correlation induced
incoherence. Finally, we compare FeSi to its iso-structural and iso-electronic
homologue RuSi, and predict that partially substituted Fe(1-x)Ru(x)Si will
exhibit an increased thermopower at intermediate temperatures.Comment: 14 pages. Proceedings of the Hvar 2011 Workshop on 'New materials for
thermoelectric applications: theory and experiment
- …