80 research outputs found

    Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial

    Get PDF
    Objective: Assess ustekinumab efficacy (week 24/week 52) and safety (week 16/week 24/week 60) in patients with active psoriatic arthritis (PsA) despite treatment with conventional and/or biological anti-tumour necrosis factor (TNF) agents. Methods: In this phase 3, multicentre, placebo-controlled trial, 312 adults with active PsA were randomised (stratified by site, weight (≤100 kg/>100 kg), methotrexate use) to ustekinumab 45 mg or 90 mg at week 0, week 4, q12 weeks or placebo at week 0, week 4, week 16 and crossover to ustekinumab 45 mg at week 24, week 28 and week 40. At week 16, patients with <5% improvement in tender/swollen joint counts entered blinded early escape (placebo→45 mg, 45 mg→90 mg, 90 mg→90 mg). The primary endpoint was ≥20% improvement in American College of Rheumatology (ACR20) criteria at week 24. Secondary endpoints included week 24 Health Assessment Questionnaire-Disability Index (HAQ-DI) improvement, ACR50, ACR70 and ≥75% improvement in Psoriasis Area and Severity Index (PASI75). Efficacy was assessed in all patients, anti-TNF-naïve (n=132) patients and anti-TNF-experienced (n=180) patients. Results: More ustekinumab-treated (43.8% combined) than placebo-treated (20.2%) patients achieved ACR20 at week 24 (p<0.001). Significant treatment differences were observed for week 24 HAQ-DI improvement (p<0.001), ACR50 (p≤0.05) and PASI75 (p<0.001); all benefits were sustained through week 52. Among patients previously treated with ≥1 TNF inhibitor, sustained ustekinumab efficacy was also observed (week 24 combined vs placebo: ACR20 35.6% vs 14.5%, PASI75 47.1% vs 2.0%, median HAQ-DI change −0.13 vs 0.0; week 52 ustekinumab-treated: ACR20 38.9%, PASI75 43.4%, median HAQ-DI change −0.13). No unexpected adverse events were observed through week 60. Conclusions: The interleukin-12/23 inhibitor ustekinumab (45/90 mg q12 weeks) yielded significant and sustained improvements in PsA signs/symptoms in a diverse population of patients with active PsA, including anti-TNF-experienced PsA patients

    A Dual Fluorescence–Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM–EPR Spectroscopy

    Get PDF
    Simultaneous visualization and concentration quantification of molecules in biological tissue is an important though challenging goal. The advantages of fluorescence lifetime imaging microscopy (FLIM) for visualization, and electron paramagnetic resonance (EPR) spectroscopy for quantification are complementary. Their combination in a multiplexed approach promises a successful but ambitious strategy because of spin label-mediated fluorescence quenching. Here, we solved this problem and present the molecular design of a dual label (DL) compound comprising a highly fluorescent dye together with an EPR spin probe, which also renders the fluorescence lifetime to be concentration sensitive. The DL can easily be coupled to the biomolecule of choice, enabling in vivo and in vitro applications. This novel approach paves the way for elegant studies ranging from fundamental biological investigations to preclinical drug research, as shown in proof-of-principle penetration experiments in human skin ex vivo

    Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High throughput sequencing (HTS) technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination.</p> <p>Results</p> <p>We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR). We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment.</p> <p>Conclusions</p> <p>Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.</p

    The evolution of the plastid chromosome in land plants: gene content, gene order, gene function

    Get PDF
    This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable

    Hydroponic technologies

    Get PDF
    This open access book, written by world experts in aquaponics and related technologies, provides the authoritative and comprehensive overview of the key aquaculture and hydroponic and other integrated systems, socio-economic and environmental aspects. Aquaponic systems, which combine aquaculture and vegetable food production offer alternative technology solutions for a world that is increasingly under stress through population growth, urbanisation, water shortages, land and soil degradation, environmental pollution, world hunger and climate change.Hydroponics is a method to grow crops without soil, and as such, these systems are added to aquaculture components to create aquaponics systems. Thus, together with the recirculating aquaculture system (RAS), hydroponic production forms a key part of the aqua-agricultural system of aquaponics. Many different existing hydroponic technologies can be applied when designing aquaponics systems. This depends on the environmental and financial circumstances, the type of crop that is cultivated and the available space. This chapter provides an overview of different hydroponic types, including substrates, nutrients and nutrient solutions, and disinfection methods of the recirculating nutrient solutions

    Ribosome profiling reveals the what, when, where and how of protein synthesis

    Full text link
    Ribosome profiling, which involves the deep sequencing of ribosome-protected mRNA fragments, is a powerful tool for globally monitoring translation in vivo. The method has facilitated discovery of the regulation of gene expression underlying diverse and complex biological processes, of important aspects of the mechanism of protein synthesis, and even of new proteins, by providing a systematic approach for experimental annotation of coding regions. Here, we introduce the methodology of ribosome profiling and discuss examples in which this approach has been a key factor in guiding biological discovery, including its prominent role in identifying thousands of novel translated short open reading frames and alternative translation products

    Stress-compensating MEMS sensor assembly

    No full text
    In this work, a system assembly technology will be presented that allows an effective mechanical decoupling of the MEMS element from the environment while maintaining minimal package footprint and cost. It utilizes a Si interposer with planar spring structures for an independent suspension of all interconnects to the MEMS element. The design of the planar springs was optimized for maximum stability and effectiveness using finite element analysis. The MEMS die is arranged below the interposer for mechanical protection during assembly and operation. The required clearance to the substrate is provided only by industry standard solder balls. The interposer is manufactured on a temporary carrier wafer by deep reactiveion etching, the interconnect to the MEMS die is realized by thermo-compression bonding. The effectiveness of this approach is demonstrated through the example of a high accuracy pressure sensor, although beyond that it has the potential to provide a functional package platform for MEMS sensors in a multitude of applications

    Effect of wafer-level silicon cap packaging on BiCMOS embedded RF-MEMS switch performance

    No full text
    In this paper, the effect of silicon (Si) cap packaging on the BiCMOS embedded RF-MEMS switch performance is studied. The RF-MEMS switches are designed and fabricated in a 0.25μm SiGe BiCMOS technology for K-band (18 - 27 GHz) applications. The packaging is done based on a wafer-to-wafer bonding technique and the RF-MEMS switches are electrically characterized before and after the Si cap packaging. The experimental data shows the effect of the wafer-level Si cap package on the C-V and S-parameter measurements. The performed 3D FEM simulations prove that the low resistive Si cap, specifically 1Ω·cm, results in a significant RF performance degradation of the RF-MEMS switch in terms of insertion loss

    Wafer level packaging of MEMS and 3D integration with CMOS for fabrication of timing microsystems

    No full text
    The following paper gives an insight on the packaging concepts and fabrication processes used to ultimately manufacture a timing module at wafer scale. The packaging of the timing module consists in the integration of an ASIC together with a Quartz-based or Twin-Silicon resonator MEMS which require to be hermetically sealed under vacuum for proper function. The 3D-integration enables a significant miniaturization of the complete system. Subsequently a BAW (Bulk Acoustic Wave) resonator can be further associated over the quartz resonator to form a MEMS-based freely programmable oscillator for stable clock generation, covering a large frequency range between 1 and 50 MHz. The principal fabrication processes include the implementation of Through-Silicon Vias (TSV) in active CMOS wafers, temporary wafer bonding for thin wafer handling and wafer bonding for metallic sealing under vacuum and formation of electrical interconnects. The components were packaged by chip to wafer assembly onto active CMOS wafers with TSVs and subsequent wafer to wafer bonding with a corresponding cavity cap wafer for vacuum encapsulation. All processes have been developed and performed at 200 mm industrial wafer scale
    corecore