931 research outputs found

    A rigorous approach to facilitate and guarantee the correctness of the genetic testing management in human genome information systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent medical and biological technology advances have stimulated the development of new testing systems that have been providing huge, varied amounts of molecular and clinical data. Growing data volumes pose significant challenges for information processing systems in research centers. Additionally, the routines of genomics laboratory are typically characterized by high parallelism in testing and constant procedure changes.</p> <p>Results</p> <p>This paper describes a formal approach to address this challenge through the implementation of a genetic testing management system applied to human genome laboratory. We introduced the Human Genome Research Center Information System (CEGH) in Brazil, a system that is able to support constant changes in human genome testing and can provide patients updated results based on the most recent and validated genetic knowledge. Our approach uses a common repository for process planning to ensure reusability, specification, instantiation, monitoring, and execution of processes, which are defined using a relational database and rigorous control flow specifications based on process algebra (ACP). The main difference between our approach and related works is that we were able to join two important aspects: 1) process scalability achieved through relational database implementation, and 2) correctness of processes using process algebra. Furthermore, the software allows end users to define genetic testing without requiring any knowledge about business process notation or process algebra.</p> <p>Conclusions</p> <p>This paper presents the CEGH information system that is a Laboratory Information Management System (LIMS) based on a formal framework to support genetic testing management for Mendelian disorder studies. We have proved the feasibility and showed usability benefits of a rigorous approach that is able to specify, validate, and perform genetic testing using easy end user interfaces.</p

    Is urinary density an adequate predictor of urinary osmolality?

    Get PDF
    Urinary density (UD) has been routinely used for decades as a surrogate marker for urine osmolality (U-osm). We asked if UD can accurately estimate U-osm both in healthy subjects and in different clinical scenarios of kidney disease. UD was assessed by refractometry. U-osm was measured by freezing point depression in spot urines obtained from healthy volunteers (N = 97) and in 319 inpatients with acute kidney injury (N = 95), primary glomerulophaties (N = 118) or chronic kidney disease (N = 106). UD and U-osm correlated in all groups (p < 0.05). However, a wide range of U-osm values was associated with each UD value. When UD was <= 1.010, 28.4% of samples had U-osm above 350 mOsm/kg. Conversely, in 61.6% of samples with UD above 1.020, U-osm was below 600 mOsm/kg. As expected, U-osm exhibited a strong relationship with serum creatinine (S-creat), whereas a much weaker correlation was found between UD and Screat. We found that UD is not a substitute for U-osm. Although UD was significantly correlated with U-osm, the wide dispersion makes it impossible to use UD as a dependable clinical estimate of U-osm. Evaluation of the renal concentrating ability should be based on direct determination of U-osm1

    Gene Expression Profile of Mesenchymal Stem Cells from Paired Umbilical Cord Units: Cord is Different from Blood

    Get PDF
    Mesenchymal stem cells (MSC) are multipotent cells which can be obtained from several adult and fetal tissues including human umbilical cord units. We have recently shown that umbilical cord tissue (UC) is richer in MSC than umbilical cord blood (UCB) but their origin and characteristics in blood as compared to the cord remains unknown. Here we compared, for the first time, the exonic protein-coding and intronic noncoding RNA (ncRNA) expression profiles of MSC from match-paired UC and UCB samples, harvested from the same donors, processed simultaneously and under the same culture conditions. The patterns of intronic ncRNA expression in MSC from UC and UCB paired units were highly similar, indicative of their common donor origin. The respective exonic protein-coding transcript expression profiles, however, were significantly different. Hierarchical clustering based on protein-coding expression similarities grouped MSC according to their tissue location rather than original donor. Genes related to systems development, osteogenesis and immune system were expressed at higher levels in UCB, whereas genes related to cell adhesion, morphogenesis, secretion, angiogenesis and neurogenesis were more expressed in UC cells. These molecular differences verified in tissue-specific MSC gene expression may reflect functional activities influenced by distinct niches and should be considered when developing clinical protocols involving MSC from different sources. In addition, these findings reinforce our previous suggestion on the importance of banking the whole umbilical cord unit for research or future therapeutic use

    Human Fallopian Tube Mesenchymal Stromal Cells Enhance Bone Regeneration in a Xenotransplanted Model

    Get PDF
    We have recently reported that human fallopian tubes, which are discarded during surgical procedures of women submitted to sterilization or hysterectomies, are a rich source of human fallopian tube mesenchymal stromal cells (htMSCs). It has been previously shown that human mesenchymal stromal cells may be useful in enhancing the speed of bone regeneration. This prompted us to investigate whether htMSCs might be useful for the treatment of osteoporosis or other bone diseases, since they present a pronounced capacity for osteogenic differentiation in vitro. Based on this prior knowledge, our aim was to evaluate, in vivo, the osteogenic capacity of htMSCs to regenerate bone through an already described xenotransplantation model: nonimmunosuppressed (NIS) rats with cranial defects. htMSCs were obtained from five 30–50 years old healthy women and characterized by flow cytometry and for their multipotenciality in vitro capacity (osteogenic, chondrogenic and adipogenic differentiations). Two symmetric full-thickness cranial defects on each parietal region of seven NIS rats were performed. The left side (LS) of six animals was covered with CellCeram (Scaffdex)—a bioabsorbable ceramic composite scaffold that contains 60% hydroxyapatite and 40% β-tricalciumphosphate—only, and the right side (RS) with the CellCeram and htMSCs (106 cells/scaffold). The animals were euthanized at 30, 60 and 90 days postoperatively and cranial tissue samples were taken for histological analysis. After 90 days we observed neobone formation in both sides. However, in animals euthanized 30 and 60 days after the procedure, a mature bone was observed only on the side with htMSCs. PCR and immunofluorescence analysis confirmed the presence of human DNA and thus that human cells were not rejected, which further supports the imunomodulatory property of htMSCs. In conclusion, htMSCs can be used successfully to enhance bone regeneration in vivo, opening a new field for future treatments of osteoporosis and bone reconstruction

    Combined effect of AMPK/PPAR agonists and exercise training in mdx mice functional performance

    Get PDF
    The present investigation was undertaken to test whether exercise training (ET) associated with AMPK/PPAR agonists (EM) would improve skeletal muscle function in mdx mice. These drugs have the potential to improve oxidative metabolism. This is of particular interest because oxidative muscle fibers are less affected in the course of the disease than glycolitic counterparts. Therefore, a cohort of 34 male congenic C57Bl/10J mdx mice included in this study was randomly assigned into four groups: vehicle solution (V), EM [AICAR (AMPK agonist, 50 mg/Kg-1.day-1, ip) and GW 1516 (PPAR delta agonist, 2.5 mg/Kg-1.day-1, gavage)], ET (voluntary running on activity wheel) and EM+ET. Functional performance (grip meter and rotarod), aerobic capacity (running test), muscle histopathology, serum creatine kinase (CK), levels of ubiquitined proteins, oxidative metabolism protein expression (AMPK, PPAR, myoglobin and SCD) and intracellular calcium handling (DHPR, SERCA and NCX) protein expression were analyzed. Treatments started when the animals were two months old and were maintained for one month. A significant functional improvement (p&lt;0.05) was observed in animals submitted to the combination of ET and EM. CK levels were decreased and the expression of proteins related to oxidative metabolism was increased in this group. There were no differences among the groups in the intracellular calcium handling protein expression. To our knowledge, this is the first study that tested the association of ET with EM in an experimental model of muscular dystrophy. Our results suggest that the association of ET and EM should be further tested as a potential therapeutic approach in muscular dystrophies.Fundacao de Amparo a Pesquisa do Estado de Sao PauloFundacao de Amparo a Pesquisa do Estado de Sao Paulo [FAPESP - CEPID 98/14254-2]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Instituto Nacional de Ciencia e Tecnologia (INCT)Instituto Nacional de Ciencia e Tecnologia (INCT

    Overexpression of KLC2 due to a homozygous deletion in the non-coding region causes SPOAN syndrome

    Get PDF
    SPOAN syndrome is a neurodegenerative disorder mainly characterized by spastic paraplegia, optic atrophy and neuropathy (SPOAN). Affected patients are wheelchair bound after 15 years old, with progressive joint contractures and spine deformities. SPOAN patients also have sub normal vision secondary to apparently non-progressive congenital optic atrophy. A potential causative gene was mapped at 11q13 ten years ago. Here we performed next-generation sequencing in SPOAN-derived samples. While whole-exome sequencing failed to identify the causative mutation, whole-genome sequencing allowed to detect a homozygous 216-bp deletion (chr11.hg19:g.66,024,557_66,024,773del) located at the non-coding upstream region of the KLC2 gene. Expression assays performed with patient’s fibroblasts and motor neurons derived from SPOAN patients showed KLC2 overexpression. Luciferase assay in constructs with 216-bp deletion confirmed the overexpression of gene reporter, varying from 48 to 74%, as compared with wild-type. Knockdown and overexpression of klc2 in Danio rerio revealed mild to severe curly-tail phenotype, which is suggestive of a neuromuscular disorder. Overexpression of a gene caused by a small deletion in the non-coding region is a novel mechanism, which to the best of our knowledge, was never reported before in a recessive condition. Although the molecular mechanism of KLC2 up-regulation still remains to be uncovered, such example adds to the importance of non-coding regions in human pathologyFil: Melo, Uira S.. Universidade de Sao Paulo; BrasilFil: Macedo Souza, Lucia I.. Universidade de Sao Paulo; BrasilFil: Figueiredo, Thalita. Federal University of Paraiba; Brasil. Paraiba State University; BrasilFil: Muotri, Alysson R. University of California at San Diego; Estados UnidosFil: Gleeson, Joseph G.. The Rockefeller University; Estados UnidosFil: Coux, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Armas, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Calcaterra, Nora Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Kitajima, João P.. Mendelics Genomic Analysis; BrasilFil: Amorim, Simone. Universidade de Sao Paulo; BrasilFil: Olávio, Thiago R.. Universidade de Sao Paulo; BrasilFil: Griesi Oliveira, Karina. Universidade de Sao Paulo; BrasilFil: Coatti, Giuliana C.. Universidade de Sao Paulo; BrasilFil: Rocha, Clarissa R.R. Universidade de Sao Paulo; BrasilFil: Martins Pinheiro, Marinalva. Universidade de Sao Paulo; BrasilFil: Menck, Carlos F.M.. Universidade de Sao Paulo; BrasilFil: Zaki, Maha S.. National Research Center. EL Cairo; EgiptoFil: Kok, Fernando. Universidade de Sao Paulo; BrasilFil: Zatz, Mayana. Universidade de Sao Paulo; BrasilFil: Santos, Silvana. Federal University of Paraiba; Brasil. Paraiba State University; Brasi
    • …
    corecore